PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized control of industrial microgrid energy storage using particle swarm techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Renewable energy sources have rapidly developed over the past few years. The stochastic nature of the generated energy in photovoltaic systems (PV) and wind power plants is causing more interest in energy storage systems (ESS). In commercial installations, deterministic methods are used to control the power of the storage, which is not efficient. Developing algorithms that optimize economic and technical aspects is necessary. Methods based on computational intelligence (CI) can be a solution. The paper presents a novel CI algorithm for optimizing power flow in microgrids using the particle swarm optimization (PSO) method. The economic and technical efficiency of control is achieved by combining multiple criteria in the objective function. The solution is universal, scalable, and can be applied to any industrial or residential microgrid. The method uses short-term forecasts of local generation and load and specifications of ESS, ensuring that technological constraints are maintained. Analyses were conducted for a whole year for a real industrial microgrid. The paper presents the selected results of the study. The efficiency of the proposed algorithm is compared with the results obtained by a deterministic algorithm aimed at maximizing autoconsumption. Using the PSO algorithm resulted in an economic effect of =C6 635 with 461 full discharge cycles, compared to =C2 287 and 110 cycles for the deterministic approach, meaning an increase of more than 2.5 times. However, such storage operation requires more intensive work, affecting its lifetime. Further research can develop objective functions that, without compromising economic effects, support microgrid operation: improving power quality, minimizing voltage fluctuations.
Rocznik
Strony
631--652
Opis fizyczny
Bibliogr 36 poz., rys., tab., wykr., wz.
Twórcy
  • Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] Dunn B., Kamath H., Tarascon J.-M., Electrical Energy Storage for the Grid: A Battery of Choices, Science, vol. 334, iss. 6056, pp. 928–935 (2011), DOI: 10.1126/science.1212741.
  • [2] Rigo-Mariani R., Sareni B., Roboam X., Integrated Optimal Design of a Smart Microgrid with Storage, IEEE Trans. Smart Grid, vol. 8, pp. 1762–1770, DOI: 10.1109/TSG.2015.2507131.
  • [3] Judge M. A., Manzoor A., Maple C., Rodrigues J. J. P. C., Islam S., Price-Based Demand Response for Household Load Management with Interval Uncertainty, Energy Reports, vol. 7, pp. 8493–8504 (2021), DOI: 10.1016/j.egyr.2021.02.064.
  • [4] Tsao Y.-C., Thanh V.-V., Wu Q., Sustainable Microgrid Design Considering Blockchain Technology for Real-Time Price-Based Demand Response Programs, Int. J. Electr. Power Energy Syst., vol. 125, 106418 (2021), DOI: 10.1016/j.ijepes.2020.106418.
  • [5] Nan S., Zhou M., Li G., Optimal Residential Community Demand Response Scheduling in Smart Grid, Appl. Energy, vol. 210, pp. 1280–1289 (2018), DOI: 10.1016/j.apenergy.2017.06.066.
  • [6] Venizelou V., Makrides G., Efthymiou V., Georghiou G. E., Methodology for Deploying Cost-Optimum Price-Based Demand Side Management for Residential Prosumers, Renew. Energy, vol. 153, pp. 228–240 (2020), DOI: 10.1016/j.renene.2020.02.025.
  • [7] Stenner K., Frederiks E. R., Hobman E. V., Cook S., Willingness to Participate in Direct Load Control: The Role of Consumer Distrust, Appl. Energy, vol. 189, pp. 76–88 (2017), DOI: 10.1016/j.apenergy.2016.10.099.
  • [8] Yilmaz S., Xu X., Cabrera D., Chanez C., Cuony P., Patel M. K., Analysis of Demand-Side Response Preferences Regarding Electricity Tariffs and Direct Load Control: Key Findings from a Swiss Survey, Energy, vol. 212, 118712 (2020), DOI: 10.1016/j.energy.2020.118712.
  • [9] Luo F., Zhao J., Dong Z. Y., Tong X., Chen Y., Yang H., Zhang H., Optimal Dispatch of Air Conditioner Loads in Southern China Region by Direct Load Control, IEEE Trans, Smart Grid, vol. 7, pp. 439–450, DOI: 10.1109/TSG.2014.2388233.
  • [10] Shabshab S. C., Lindahl P. A., Nowocin J. K., Donnal J., Blum D., Norford L., Leeb S. B., Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control, IEEE Trans. Smart Grid, vol. 11, pp. 1917–1927 (2020), DOI: 10.1109/TSG.2019.2945278.
  • [11] Tamashiro K., Alharbi T., Mikhaylov A., Hemeida A. M., Krishnan N., Lotfy M. E., Senjyu T., Investigation of Home Energy Management with Advanced Direct Load Control and Optimal Scheduling of Controllable Loads, Energies, vol. 14, 7314 (2021), DOI: 10.3390/en14217314.
  • [12] Delavari A., Kamwa I., Sparse and Resilient Hierarchical Direct Load Control for Primary Frequency Response Improvement and Inter-Area Oscillations Damping, IEEE Trans. Power Syst., vol. 33, pp. 5309–5318 (2018), DOI: 10.1109/TPWRS.2018.2795462.
  • [13] Pandzic H., Dvorkin Y., Qiu T., Wang Y., Kirschen D. S., Toward Cost-Efficient and Reliable Unit Commitment Under Uncertainty, IEEE Trans. Power Syst., vol. 31, pp. 970–982 (2016), DOI: 10.1109/TPWRS.2015.2434848.
  • [14] Bruninx K., Van den Bergh K., Delarue E., D’haeseleer W., Optimization and Allocation of Spinning Reserves in a Low-Carbon Framework, IEEE Trans. Power Syst., vol. 31, pp. 872–882 (2016), DOI: 10.1109/TPWRS.2015.2430282.
  • [15] Xiong P., Jirutitijaroen P., Singh C., A Distributionally Robust Optimization Model for Unit Commitment Considering Uncertain Wind Power Generation, IEEE Trans. Power Syst., vol. 32, pp. 39–49 (2017), DOI: 10.1109/TPWRS.2016.2544795.
  • [16] Qing K., Huang Q., Du Y., Jiang L., Bamisile O., Hu W., Distributionally Robust Unit Commitment with an Adjustable Uncertainty Set and Dynamic Demand Response, Energy, vol. 262, 125434 (2023), DOI: 10.1016/j.energy.2022.125434.
  • [17] Wang J., Zheng H., Feng S., Chen C., Liu S., Wang Y., Comparison of Efficient Procedures for Hydropower Unit Commitment, Energy Reports, vol. 8, pp. 2472–2479 (2022), DOI: 10.1016/j.egyr. 2022.01.184.
  • [18] Liu Z., Wu G., Zhang X., Fan Z., Shao X., Li K., Fan B., Privacy-Reserved Economic Dispatch of Microgrid Considering Flexible Regulation of Air-Conditioning Load, Sustain. Energy Technol. Assessments, vol. 53, 102717 (2022), DOI: 10.1016/j.seta.2022.102717.
  • [19] Ji L., Shen M., Yang S., Li H., Distributed Event-Triggering Algorithm with Uncoordinated Step Sizes for Economic Dispatch Problem Over Unbalanced Directed Network, Int. J. Electr. Power Energy Syst., vol. 145, 108601 (2023), DOI: 10.1016/j.ijepes.2022.108601.
  • [20] Liu Q., Li R., Dereli R. K., Flynn D., Casey E., Water Resource Recovery Facilities as Potential Energy Generation Units and Their Dynamic Economic Dispatch, Appl. Energy, vol. 318, 119199 (2022), DOI: 10.1016/j.apenergy.2022.119199.
  • [21] Li L., Dong M., Song D., Yang J., Wang Q., Distributed and Real-Time Economic Dispatch Strategy for an Islanded Microgrid with Fair Participation of Thermostatically Controlled Loads, Energy, vol. 261, 125294 (2022), DOI: 10.1016/j.energy.2022.125294.
  • [22] Qin H., Liu M., Chen Y., Wang J., Unit Commitment for the New Power System Considering the Uncertain Generation and Consumption in 2024 IEEE 2nd International Conference on Power Science and Technology (ICPST), IEEE, pp. 556–561 (2024), DOI: 10.1109/ICPST61417.2024.10601754.
  • [23] Rezvani A., Gandomkar M., Izadbakhsh M., Ahmadi A., Environmental/Economic Scheduling of a Microgrid with Renewable Energy Resources, J. Clean. Prod., vol. 87, pp. 216–226 (2015), DOI: 10.1016/j.jclepro.2014.09.088.
  • [24] Bruninx K., Dvorkin Y., Delarue E., Pandzic H., Dhaeseleer W., Kirschen D. S., Coupling Pumped Hydro Energy Storage with Unit Commitment, IEEE Trans. Sustain. Energy, vol. 7, pp. 786–796 (2016), DOI: 10.1109/TSTE.2015.2498555.
  • [25] Yuksek G., Alkaya A., An Adaptive Energy Management Approach for Battery-Supercapacitor Hybrid Energy Storage System, Bulletin of the Polish Academy of Sciences Technical Sciences, pp. 150203–150203 (2024), DOI: 10.24425/bpasts.2024.150203.
  • [26] Yu F., Chu X., Sun D., Liu X., Low-Carbon Economic Dispatch Strategy for Renewable Integrated Power System Incorporating Carbon Capture and Storage Technology, Energy Reports, vol. 8, pp. 251–258 (2022), DOI: 10.1016/j.egyr.2022.05.196.
  • [27] Shukla A., Singh S. N., Multi-Objective Unit Commitment with Renewable Energy Using Hybrid Approach, IET Renew. Power Gener., vol. 10, pp. 327–338 (2016), DOI: 10.1049/iet-rpg.2015.0034.
  • [28] Basak S., Bhattacharyya B., Dey B., Dynamic Economic Dispatch Using Hybrid CSAJAYA Algorithm Considering Ramp Rates and Diverse Wind Profiles, Intell. Syst. with Appl., vol. 16, 200116 (2022), DOI: 10.1016/j.iswa.2022.200116.
  • [29] Zhang L., Khishe M., Mohammadi M., Mohammed A. H., Environmental Economic Dispatch Optimization Using Niching Penalized Chimp Algorithm, Energy, vol. 261, 125259 (2022), DOI: 10.1016/j.energy.2022.125259.
  • [30] Li L.-L., Lou J.-L., Tseng M.-L., Lim M. K., Tan R. R., A Hybrid Dynamic Economic Environmental Dispatch Model for Balancing Operating Costs and Pollutant Emissions in Renewable Energy: A Novel Improved Mayfly Algorithm, Expert Syst. Appl., vol. 203, 117411 (2022), DOI: 10.1016/j.eswa.2022.117411.
  • [31] Sundaram A., Multiobjective Multi Verse Optimization Algorithm to Solve Dynamic Economic Emission Dispatch Problem with Transmission Loss Prediction by an Artificial Neural Network, Appl. Soft Comput., vol. 124, 109021 (2022), DOI: 10.1016/j.asoc.2022.109021.
  • [32] Kaczorowska D., Rezmer J., Jasinski M., Sikorski T., Suresh V., Leonowicz Z., Kostyla P., Szymanda J., Janik P., A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics, Energies, vol. 13, 6670 (2020), DOI: 10.3390/en13246670.
  • [33] Wang D., Tan D., Liu L., Particle Swarm Optimization Algorithm: an Overview, Soft Comput., vol. 22, pp. 387–408 (2018), DOI: 10.1007/s00500-016-2474-6.
  • [34] Li Y., Li K., Yang Z., Yu Y., Xu R., Yang M., Stochastic Optimal Scheduling of Demand Response-Enabled Microgrids with Renewable Generations: An Analytical-Heuristic Approach, J. Clean. Prod., vol. 330, 129840 (2022), DOI: 10.1016/j.jclepro.2021.129840.
  • [35] Shao S., Park J., Wong W. K., Particle swarm optimization with Applications to Maximum Likelihood Estimation and Penalized Negative Binomial Regression, arXiv preprint arXiv:2405.12386 (2024), DOI: 10.48550/arXiv.2405.12386.
  • [36] Elbeltagi E., Hegazy T., Grierson D., Comparison Among Five Evolutionary-Based Optimization Algorithms, Advanced Engineering Informatics, pp. 43–53 (2005), DOI: 10.1016/j.aei.2005.01.004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1a04c198-92fb-4544-a03d-864d5e0371d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.