Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an EEG study for coherence and phase synchrony in mild cognitive impairment (MCI) subjects. MCI is characterized by cognitive decline, which is an early stage of Alzheimer’s disease (AD). AD is a neurodegenerative disorder with symptoms such as memory loss and cognitive impairment. EEG coherence is a statistical measure of correlation between signals from electrodes spatially separated on the scalp. The magnitude of phase synchrony is expressed in the phase locking value (PLV), a statistical measure of neuronal connectivity in the human brain. Brain signals were recorded using an Emotiv Epoc 14-channel wireless EEG at a sampling frequency of 128 Hz. In this study, we used 22 elderly subjects consisted of 10 MCI subjects and 12 healthy subjects as control group. The coherence between each electrode pair was measured for all frequency bands (delta, theta, alpha and beta). In the MCI subjects, the value of coherence and phase synchrony was generally lower than in the healthy subjects especially in the beta frequency. A decline of intrahemisphere coherence in the MCI subjects occurred in the left temporo-parietal-occipital region. The pattern of decline in MCI coherence is associated with decreased cholinergic connectivity along the path that connects the temporal, occipital, and parietal areas of the brain to the frontal area of the brain. EEG coherence and phase synchrony are able to distinguish persons who suffer AD in the early stages from healthy elderly subjects.
Słowa kluczowe
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Biophysics Lab, Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
- Physics Department, Faculty of Science and Technology, UIN Sunan Kalijaga, Yogyakarta, Indonesia
autor
- Biophysics Lab, Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
autor
- Biophysics Lab, Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
autor
- Biophysics Lab, Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
autor
- Neuroscience Divison, CTech Labs, PT Edwar Technology, Tangerang, Indonesia
Bibliografia
- [1] Dauwels J, Vialatte F, Latchoumane C, et al. EEG synchrony analysis for early diagnosis of Alzheimer’s disease: A study with several synchrony measures and EEG datasets. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2224-2227.
- [2] Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology. 2003;226(2):315-36.
- [3] Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271-278.
- [4] Czigler B, Csikós D, Hidasi Z, et al. Quantitative EEG in early Alzheimer’s disease patients-power spectrum and complexity features. Int J Psychophysiol. 2008;68(1):75-80.
- [5] Adeli H, Ghosh-Dastidar S, Dadmehr N. A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neurosci Lett. 2008;444(2):190-194.
- [6] Coben LA, Danziger WL, Storandt M. A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years. Electroencephalogr Clin Neurophysiol. 1985;61(2):101-112.
- [7] Giaquinto S, Nolfe G. The EEG in the normal elderly: a contribution to the interpretation of aging and dementia. Electroencephalogr Clin Neurophysiol. 1986;63(6):540-546.
- [8] Brenner RP, Ulrich RF, Spiker DG, et al. Computerized EEG spectral analysis in elderly normal demented and depressed subjects. Electroencephalogr Clin Neurophysiol. 1986;64(6):483-492.
- [9] Bennys K, Rondouin G, Vergnes C, Touchon J. Diagnostic value of quantitative EEG in Alzheimer’s disease. Neurophysiol Clin. 2001;31(3):153-160.
- [10] Pijnenburg YAL, v d Made Y, van Cappellen van Walsum AM, et al. EEG synchronization likelihood in mild cognitive impairment and Alzheimer’s disease during a working memory task. Clin Neurophysiol. 2004;115(6):1332-1339.
- [11] Stam CJ, Montez T, Jones BF, et al. Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin Neurophysiol. 2005;116(3):708-715.
- [12] Sakkalis V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med. 2011;41(12):1110-1117.
- [13] Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52(1):155-168.
- [14] Blinowska KJ, Kamiński M, Brzezicka A, Kamiński J. Application of directed transfer function and network formalism for the assessment of functional connectivity in working memory task. Philos Trans A Math Phys Eng Sci. 2013;371(1997):20110614.
- [15] Dauwels J, Vialatte F, Musha T, Cichocki A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage. 2010;49(1):668-693.
- [16] Locatelli T, Cursi M, Liberati D, et al. EEG coherence in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol. 1998;106(3):229-237.
- [17] Leuchter AF, Spar JE, Walter DO, Weiner H. Electroencephalograpic spectra and coherence in the diagnosis of Alzheimer’s-type and multi-infarct dementia: a pilot study. Arch Gen Psychiatry. 1987;44(11):993-998.
- [18] Jelic V, Julin P, Shigeta M, et al. Apolipoprotein E ε4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence. J Neurol Neurosurg Psychiatry. 1997;63(1):59-65.
- [19] Adler G, Brassen S, Jajcevic A. EEG coherence in Alzheimer’s dementia. J Neural Transm. 2003;110(9):1051-1058.
- [20] Brunovsky M, Matousek M, Edman A, et al. Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology. 2003;48(1):19-26.
- [21] Stam CJ, van der Made Y, Pijnenburg YAL, Scheltens PH. EEG synchronization in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand. 2003 Aug;108(2):90-96.
- [22] Babiloni C, Ferri R, Moretti DV, et al. Abnormal fronto-parietal coupling of brain rhythms in mild Alzheimer’s disease: a multricentric EEG study. Eur J Neurosci. 2004;19(9):2583-2590.
- [23] Babiloni C, Ferri R, Binetti G, et al. Fronto-parietal coupling of brain rhythms in mild cognitive impairment: a multicentric EEG study. Brain Res Bull. 2006;69(1):63-73.
- [24] Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-198.
- [25] Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695-699.
- [26] Nunez PL, Srinivasan R, Westdorp AF, et al. EEG coherency I: Statistics reference electrode volume conduction Laplacians cortical imaging and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol. 1997;103(5):499-515.
- [27] Nunez PL, Silberstein RB, Shi Z, et al. EEG coherency II: experimental comparisons of multiple measures. Clin Neurophysiol. 1999;110(3):469-486.
- [28] Sankari Z, Adeli H, Adeli A. Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease. Clin Neurophysiol. 2011;122(5):897-906.
- [29] Lachaux JP, Rodrigues E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194-208.
- [30] Glass A, Zappulla R, Nieves J, Diamond S. EEG coherence as a predictor of spike propagation. Electroencephalogr Clin Neurophysiol. 1992;82(1):10-16.
- [31] Kikuchi M, Wada Y, Koshino Y, et al. Effect of normal aging upon interhemispheric EEG coherence: analysis during rest and photic stimulation. Clin Electroencephalogr. 2000;31(4):170-174.
- [32] Anghinah R, Kanda PA, Jorge MS, et al. Alpha band coherence analysis of EEG in healthy adult’s and Alzheimer’s type dementia patients. Arq Neuropsiquiatr. 2000;58(2A):272-275.
- [33] Jelic V, Shigeta M, Julin P, et al. Quantitative electroencephalography power and coherence in Alzheimer’s disease and mild cognitive impairment. Dementia. 1996;7(6):314-323.
- [34] Soininen H, Riekkinen PJ. EEG in diagnostics and follow-up of Alzheimer’s disease. Acta Neurol Scand Suppl. 1992;139:36-39.
- [35] Elmstahl S, Rosen I, Gullberg B. Quantitative EEG in elderly patients with Alzheimer’s disease and healthy controls. Dementia. 1994;5(2):119-124.
- [36] Hogan MJ, Swanwick GR, Kaiser J, et al. Memory-related EEG power and coherence reductions in mild Alzheimer’s disease. Int J Psychophysiol. 2003;49(2):147-263.
- [37] Jeong J. EEG dynamics in patients with Alzheimer's disease. Clin Neurophysiol. 2004;115(7):1490-1505.
- [38] Besthorn C, Forstl H, Geiger-Kabish C, et al. EEG coherence in Alzheimer disease. Electroenceph Clin Neurophysiol. 1994;90(3):242-245.
- [39] Güntekin B, Saatçi E, Yener G. Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm. Brain Res. 2008;1235:109-116.
- [40] Jiang ZY. Study on EEG power and coherence in patients with mild cognitive impairment during working memory task. J Zhejiang Univ Sci B. 2005;6(12):1213-1219.
- [41] Basar E, Basar-Erogluc C, Karakas S, Schurmanna M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39(2-3):241-248.
- [42] Kaminski M, Blinowska KJ. Directed Transfer Function is not influenced by volume conduction-inexpedient pre-processing should be avoided. Front Comput Neurosci. 2014;8:61.
- [43] Olejarczyk E, Marzetti L, Pizzella V, Zappasodi F. Comparison of connectivity analyses for resting state EEG data. J Neural Eng. 2017;14(3):036017.
- [44] Kaminski M, Brzezicka A, Kaminski J, Blinowska K. Measures of coupling between neural populations based on Granger causality principle. Frontiers Comput Neurosci. 2016;10:114.
- [45] Burgess AP. On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Front Hum Neurosci. 2013;7:881.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19fd216c-9bca-47f8-9e9a-69a1d2fdd6c8