PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concerning the shock sensitivity of cyclic nitramines incorporated into a polyisobutylene matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two types of plastic bonded explosives (PBXs) based on ε-2,4,6,8,10,12hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, CL-20), and PBXs based on 1,3,5-trinitro-1,3,5-triazinane (RDX), β-1,3,4,7-tetranitro-1,3,5,7-tetrazocane (β-HMX) and cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole (bicycloHMX, BCHMX) were prepared using a polyisobutylene binder with dioctylsebacate (DOS) as plasticizer, i.e. a C4 matrix. One version of the ε-HNIW PBX is a product with reduced sensitivity (RS-ε-HNIW). All these PBXs, referenced respectively as RS-ε-HNIW-C4, ε-HNIW-C4, RDX-C4, HMX-C4 and BCHMX-C4, were tested using the Small Scale Gap Test according to STANAG 4488. The results of the gap test on the PBXs with RDX, β-HMX and BCHMX correspond to the impact sensitivities of the original crystalline nitramines. This is not entirely valid for ε-HNIW. In other words, PBXs with RS-ε-HNIW cannot achieve as low a shock sensitivity as would be expected from the differences obtained from the impact sensitivities between RDX, β-HMX and BCHMX, on the one hand, and RS-εHNIW on the other. It is shown that the morphological stability of RS-ε-HNIW in the C4 matrix is insufficient. However, further development and use of RS-ε-HNIW as a filler of PBXs would seem to be both desirable and beneficial. Despite the relatively high impact sensitivity of crystalline BCHMX, the shock sensitivity of its analogous C4 PBX is already good, and comparable with that of RS-ε-HNIW.
Rocznik
Strony
219--235
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic
autor
  • nstitute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic
autor
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic
autor
  • Deptartment of General & Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic
autor
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
autor
  • Research Institute of Industrial Chemistry, Explosia Co., CZ-532 17 Pardubice, Czech Republic
Bibliografia
  • [1] Klasovitý D., Zeman S., Růžička A., Jungová M., Roháč M., cis-1,3,4,6- Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), Its Properties and Initiation Reactivity, J. Hazard. Mater., 2009, 164, 954-961.
  • [2] Klasovitý D., Zeman S., Process for Preparing cis-1,3,4,6-Tetranitrooctahydroimidazo- [4,5-d]imidazole (bicyclo-HMX, BCHMX), Czech Patent 302068, C07D 487/04, Univ. of Pardubice, 2010.
  • [3] Elbeih, A., Zeman S., Jungová M., Vávra P., Attractive Nitramines and PBXs on Their Base, Propellants Explos. Pyrotech., 2013, 38, 379-385.
  • [4] Elbeih A., Pachmáň J., Trzciński W.A., Zeman S., Akštein Z., Šelešovský J., Study of Plastic Explosives Based on Attractive Cyclic Nitramines. Part I. Detonation Characteristics of Explosives with C4 Binder, Propellants Explos. Pyrotech., 2011, 36(5), 433-438.
  • [5] Simpson R.L., Utriew P.A., Ornellas D.L., Moody G.L., Scribner K.J., Hoffman D.M., CL20 Performance Exceeds that of HMX and Its Sensitivity is Moderate, Propellants Explos. Pyrotech., 1997, 22, 249-255.
  • [6] Krause H.H., New Energetic Materials, in: Energetic Materials, (Teipel U., Ed.), Willey-VCH, Weinheim, 2005, pp. 1-25.
  • [7] Ou Y., Wang C., Pan Z., Chen B., Sensitivity of Hexanitrohexaazaisowurtzitane, Chin. J. Energet. Mater. (HenNengCaiLiao), 1999, 7, 100-102.
  • [8] Hui H., Xu R.J., Kang B., Huang M., Li H.Z., Xu R., Sun J., Nie F.D., Li M., Recent Advances on Reduced Sensitivity Energetic Crystals at Institute of Chemical Materials in China, 42nd Int. Annu. Conf. ICT, 2011, pp. 28/1-28/12.
  • [9] Degirmenbasi N., Peralta-Inga Z., Olgun U., Gocmez H., Kalyon D.M., Recrystallization of CL-20 and HNFX from Solution for Rigorous Control of the Polymorph Type: Part II. Experimental Studies, J. Energ. Mater., 2006, 24, 103-139.
  • [10] Chen H., Li L., Jin S., Chen S., Jiao Q., Effect of Additives on ε-HNIW Crystal Morphology and Impact Sensitivity, Propellants Explos. Pyrotech., 2012, 37, 72-82.
  • [11] Elbeih A., Husarová A., Zeman S., Path to ε-HNIW with Reduced Impact Sensitivity, Cent. Eur. J. Energ. Mater., 2011, 8(3), 173-182.
  • [12] Chen H., Chen S., Liu J., If L., Jin S., Shi Y., Preparation of the Spheroidized HNIW Crystals. Faming Zhuanli Shenqing Gongkai Shuomingshu, Chinese Patent CN 101624394, A 20100113, 2010.
  • [13] Doo K.B., Spherical High-density 2,4,6,8,10,12-Hexanitrohexaazaisowurzitane and Preparation Thereof, Korean Patent KR 224043 B1, Dong Woon Specialty Chemical Co., Ltd., S. Korea, 1999.
  • [14] Li H., Xu P., Huang M., Nil F., Zhou J., Preparation and Properties of Reduced-sensitivity CL20, Chin. J. Energ. Mater. (HanNeng CaiLiao), 2009, 17(1), 125-126.
  • [15] Sivabalan R., Gore G.M., Nair U.R., Saikia A., Venugopalan S., Gaandhe B.R., Study on Ultrasound Assisted Precipitation of CL20 and Its Effect on Morphology and Sensitivity, J. Hazard. Mater., 2007, A139, 199-203.
  • [16] Detail specification RDX, Military Standard MIL-DTL-398D, US Dept. of Defense, April 17, 1996.
  • [17] Detail specification HMX, Military Standard MIL-DTL-45444C, US Dept. of Defense, Nov. 26, 1996.
  • [18] Zeman S., Yan Q.-L., Vlček M., Recent Advances in the Study of the Initiation of Energetic Materials Using the Characteristics of Their Thermal Decomposition Part I. Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2014, 11(2), 173-189.
  • [19] Zeman S., Elbeih A., Yan Q.-L., Notes on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in the C4 Matrix, J. Thermal Anal. Calorim., 2013, 112(3), 1433-1437.
  • [20] Dumas S., Gauvrit J.Y., Lanteri P., Development of Quantitative Analytical Methods to Measure the Polymorphic Composition of CL20 with FRIR-NIR or FTIR-MIR Spectroscopy using PLS Regression, Propellants Explos. Pyrotech., 2012, 37, 288-301.
  • [21] Li J., Brill T.B., Kinetics of Solid Polymorphic Phase Transitions of CL20, Propellants Explos. Pyrotech., 2007, 32(4), 326-330.
  • [22] Anonymous writer, North Atlantic Council: STANAG 4488 PSC (Edition 2), Explosive, Shock Sensitivity Tests, NATO/PfP, Unclassified Document NSA/0883- PPS/4488, 2008.
  • [23] Johansen Ǿ.H., Kristiansen J.D., Gjersǿe R., Berg A., Smith K.-T., RDX and HMX Reduced Sensitivity Towards Shock Initiation – RS-RDX and RS-HMX, Propellants Explos. Pyrotech., 2008, 33(1), 20-24.
  • [24] Cook M.A., The Science of High Explosives, New York, Reinhold, 1958.
  • [25] Zeman S., The Relationship between Differential Thermal Analysis Data and Detonation Characteristics of Polynitroaromatic Compounds, Thermochim. Acta, 1980, 41, 199-212.
  • [26] Zeman S., Sensitivity of High Energy Compounds, in: High Energy Density Materials, Series: Structure & Bonding, 125, (Klapötke T.M., Ed.), Springer, New York, 2007, pp. 195-271.
  • [27] Yan Q.-L., Zeman S., Elbeih A., Song Z.-W., Málek J., The Effect of Crystal Structure on the Thermal Reactivity of CL20 and Its C4 Bonded Explosives (I): Thermodynamic Properties and Decomposition Kinetics, J. Thermal Anal. Calorim., 2013, 112, 823-836.
  • [28] Lapina Yu. T., Savitskii A.S., Motina E.V., Bychin N.V., Lobanova A.A., Golovina N.I., Polymorphic Transformation of Hexanitrohexaazaisowurtzitane, Russ. J. Appl. Chem., 2009, 82(10), 1821-1828.
  • [29] Chukanov N.V., Dubovitskii V.A., Zakharov V.V., Golovina N.I., Korsunskii B.L., Vozchikova S.A., Nedelko V.V., Larikova T.S., Raevskii A.V., Aldoshin S.M., Phase Transformations of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane: the Role Played by Water, Dislocations and Density, Russ. J. Phys. Chem. B, 2009, 3(3), 486-493.
  • [30] Tian Q., Yan G., Sun G., Huang C., Xie L., Chen B., Huang M., Li H., Liu Y., Wang J., Thermally Induced Damage in Hexanitrohexaazaisowurtzitane, Cent. Eur. J. Energ. Mater., 2013, 10(3), 359-369.
  • [31] Gump J.C., Peiris S.M., Phase Transitions and Isothermal Equations of State of Epsilon Hexanitrohexaazaisowurtzitane (CL-20), J. Appl. Phys., 2008, 104(8), P 083509, Doi: 10.1063/1.2990066.
  • [32] Torry S., Cunliffe A., Polymorphism and Solubility of CL-20 in Plasticizers and Polymers, 31st Int. Annu. Conf. ICT, Karlsruhe, 2000, 107/1-107/12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19f6523b-9d49-4d5b-98d2-3491ac3cfd1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.