PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and hygrothermal performance of fly-ash and seashells concrete: in situ experimental study and smart hygrothermal modeling for Normandy climate conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to investigate the effect of partial substitution of cement by a smart mixture of waste materials, fly ash and Crepidula shells. The cement is replaced by fly ash and Crepidula accordingly in the range of 5, 10 and 15% by weight. This study focuses on three steps: (i) find the best formulation in terms of compression and hygrothermal behavior, (ii) build a prototype and follow the hygrothermal behavior with sensors, (III) data collection and development of a neural network model to predict the hygrothermal behavior of the prototype. The results showed that for a fly ash-Crepidula incorporation rate up to 10%, the mechanical properties are higher than the control mortar. Furthermore, the cement substitution by fly ash and Crepidula improves the thermal conductivity of concrete. With the cement replacement of 30%, a prototype was built to monitor the hygrothermal behavior. The data collected from the wireless sensors placed in the prototype are used to train and validate the artificial neural network model. The model used in this study is conducted with eight inputs and two outputs data. The investigation of the condensation risk and the mould growth shows that the chosen concrete mixture can avoid the condensation phenomenon. Indeed, the smart fly ash-Crepidula mixture provides high silica, aluminate, and calcium contents, which react with water originating from humid ambient air to form additional hydrates as a result of pozzolanic reaction and lead to a continuous strengths enhancement.
Rocznik
Strony
art. no. e100, 1--22
Opis fizyczny
Bibliogr. 73 poz., il., tab., wykr.
Twórcy
  • COMUE Normandie Université - Laboratoire ESITC CAEN, Epron, France
  • COMUE Normandie Université - Laboratoire ESITC CAEN, Epron, France
  • CRISMAT-ENSICAEN, UMR CNRS 6508, Normandie Université, Caen, France
  • COMUE Normandie Université - Laboratoire ESITC CAEN, Epron, France
Bibliografia
  • 1. Direct CO2 emissions from selected heavy industry sectors. IEA. 2019. https://www.iea.org/data-and-statistics/charts/direct-co2-emissions-from-selected-heavy-industry-sectors-2019.
  • 2. Rashad AM. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag - a guide for Civil Engineer. Constr Build Mater. 2013;47:29-55.
  • 3. Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34:1489-98.
  • 4. Liu J, Qin Q, Yu Q. The effect of size distribution of slag particles obtained in dry granulation on blast furnace slag cement strength. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2019.11.115.
  • 5. Mehta A, Siddique R, Ozbakkaloglu T, Uddin Ahmed Shaikh F, Belarbi R. Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: mechanical, transport and microstructural properties. Constr Build Mater. 2020;257:119548.
  • 6. Xu W, Zhang Y, Liu B. Influence of silica fume and low curing temperature on mechanical property of cemented paste backfill. Constr Build Mater. 2020;254:119305.
  • 7. Ahmaruzzaman M. A review on the utilization of fly ash. Prog Energy Combust Sci. 2010;36:327-363.
  • 8. Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem Concr Res. 2005;35:1224-32.
  • 9. Tang SW, Cai XH, He Z, Shao HY, Li ZJ, Chen E. Hydration process of fly ash blended cement pastes by impedance measurement. Constr Build Mater. 2016;113:939-50.
  • 10. Yu J, Lu C, Leung CKY, Li G. Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Constr Build Mater. 2017;147:510-518.
  • 11. Rashad AM. A brief on high-volume Class F fly ash as cement replacement - a guide for Civil Engineer. Int J Sustain Built Environ. 2015;4:278-306.
  • 12. Bentz D, Peltz M, Durán-Herrera A, Valdez P, Juárez C. Thermal properties of high-volume fly ash mortars and concretes. J Build Phys. 2011;34:263-275.
  • 13. Durán-Herrera A, Juárez CA, Valdez P, Bentz DP. Evaluation of sustainable high-volume fly ash concretes. Cem Concr Compos. 2011;33:39-45.
  • 14. Yang E-H, Yang Y, Li VC. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. Mater J. 2007;104:620-628.
  • 15. Lam L, Wong YL, Poon CS. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cem Concr Res. 2000;30:747-756.
  • 16. Berry EE, Hemmings RT, Cornelius BJ. Mechanisms of hydration reactions in high volume fly ash pastes and mortars. Cem Concr Compos. 1990;12:253-261.
  • 17. Escalante-Garcia J-I, Sharp JH. The chemical composition and microstructure of hydration products in blended cements. Cem Concr Compos. 2004;26:967-976.
  • 18. Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41:1244-56.
  • 19. Tayeh BA, Hasaniyah MW, Zeyad AM, Yusuf MO. Properties of concrete containing recycled seashells as cement partial replacement: a review. J Clean Prod. 2019;237:117723.
  • 20. Chiffres clés de la filière pêche et aquaculture en France. 2019. https://www.franceagrimer.fr/Actualite/Filieres/Peche-et-aquaculture/2019/Chiffres-cles-de-la-filiere-peche-et-aquaculture-en-France-en-2019. Accessed 8 Oct 2021
  • 21. Wang J, Liu E, Li L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J Clean Prod. 2019;220:235-252.
  • 22. Bouasria M, Khadraoui F, Benzaama M-H, Touati K, Chateigner D, Gascoin S, et al. Partial substitution of cement by the association of Ferronickel slags and Crepidula fornicata shells. J Build Eng. 2021;33:101587.
  • 23. Hamdaoui M-A, Benzaama M-H, El Mendili Y, Chateigner D. A review on physical and data-driven modeling of buildings hygrothermal behavior: models, approaches and simulation tools. Energy Build. 2021;251:111343.
  • 24. Deb C, Schlueter A. Review of data-driven energy modelling techniques for building retrofit. Renew Sustain Energy Rev. 2021;144:110990.
  • 25. Benzaama MH, Rajaoarisoa LH, Lekhal MC, Menhoudj S, Mokhtari AM. Thermal inertia and energy efficiency assessment of Direct Solar Floor system using a switching-linear model. Appl Energy. 2021;300:117363.
  • 26. Li Y, O’Neill Z, Zhang L, Chen J, Im P, DeGraw J. Grey-box modeling and application for building energy simulations—a critical review. Renew Sustain Energy Rev. 2021;146:111174.
  • 27. Sun Y, Haghighat F, Fung BCM. A review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy Build. 2020;221:110022.
  • 28. Wang Z, Chen Y. Data-driven modeling of building thermal dynamics: methodology and state of the art. Energy Build. 2019;203:109405.
  • 29. Kandiri A, Mohammadi Golafshani E, Behnood A. Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Constr Build Mater. 2020;248:118676.
  • 30. Behnood A, Golafshani EM. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J Clean Prod. 2018;202:54-64.
  • 31. Bilim C, Atiş CD, Tanyildizi H, Karahan O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Softw. 2009;40:334-340.
  • 32. Boğa AR, Öztürk M, Topçu İB. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI. Compos Part B Eng. 2013;45:688-696.
  • 33. Chithra S, Kumar SRRS, Chinnaraju K, Alfin AF. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr Build Mater. 2016;114:528-535.
  • 34. May Tzuc O, Rodríguez Gamboa O, Aguilar Rosel R, Che Poot M, Edelman H, Jiménez Torres M, et al. Modeling of hygrothermal behavior for green facade’s concrete wall exposed to nordic climate using artificial intelligence and global sensitivity analysis. J Build Eng. 2021;33:101625.
  • 35. Tijskens A, Roels S, Janssen H. Hygrothermal assessment of timber frame walls using a convolutional neural network. Build Environ. 2021;193:107652.
  • 36. Tijskens A, Roels S, Janssen H. Neural networks for metamodelling the hygrothermal behaviour of building components. Build Environ. 2019;162:106282.
  • 37. Chung WJ, Lim J-H. Cooling operation guidelines of thermally activated building system considering the condensation risk in hot and humid climate. Energy Build. 2019;193:226-239.
  • 38. Deshpande N, Londhe S, Kulkarni S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int J Sustain Built Environ. 2014;3:187-198.
  • 39. Khademi F, Jamal SM, Deshpande N, Londhe S. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int J Sustain Built Environ. 2016;5:355-369.
  • 40. NF EN 197-1 (2012) Cement- part 1 : composition, specifications and conformity criteria for commo cements.
  • 41. NF EN 196-1 (2016) Methods of testing cement - part 1: Determination of strength.
  • 42. NF EN 450-1 (2012) Fly ash for concrete - part 1 : definition, specifications and conformit criteria.
  • 43. El Mendili Y, Bouasria M, Benzaama M-H, Khadraoui F, Le Guern M, Chateigner D, et al. (2021) Mud-based construction material: Promising properties of french gravel wash mud mixed with by products, seashells and fly ash as a binder‬. Materials 14:6216
  • 44. Gillet P, Biellmann C, Reynard B, McMillan P. Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner. 1993;20:1-18.
  • 45. El Mendili Y, Vaitkus A, Merkys A, Gražulis S, Chateigner D, Mathevet F, et al. Raman Open Database: first interconnected Raman–X-ray diffraction open-access resource for material identification. J Appl Crystallogr. 2019;52:618-625.
  • 46. ASTM C204. Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. 2018.
  • 47. NF P18-452. Concretes - measuring the flow time of concretes and mortars using a workabilitymeter. 2017.
  • 48. NF P15-431. Hydraulic binders. Methods for testing cement. Setting test. 1994.
  • 49. Haykin SS. Neural networks and learning machines. 3rd ed. New York Munich: Prentice-Hall; 2009.
  • 50. Hodhod OA, Salama G. Developing an ANN model to simulate ASTM C1012-95 test considering different cement types and different pozzolanic additives. HBRC J. 2013;9:1-14.
  • 51. Kişi Ö. Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng. 2007;12:532-9.
  • 52. Topçu İB, Boğa AR, Hocaoğlu FO. Modeling corrosion currents of reinforced concrete using ANN. Autom Constr. 2009;18:145-152.
  • 53. Esping O. Effect of limestone filler BET(H2O)-area on the fresh and hardened properties of self-compacting concrete. Cem Concr Res. 2008;7:938-944.
  • 54. Gutteridge WA, Dalziel JA. Filler cement: the effect of the secondary component on the hydration of Portland cement: part 2: fine hydraulic binders. Cem Concr Res. 1990;20:853-61.
  • 55. Marzouki A, Lecomte A, Beddey A, Diliberto C, Ouezdou MB. The effects of grinding on the properties of Portland-limestone cement. Constr Build Mater. 2013;Complete:1145-55.
  • 56. Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cement hydration. Cem Concr Res. 2007;37:551-558.
  • 57. Georgescu M, Saca N. Properties of blended cements with limestone filler and fly ash content. Sci Bull. 2009;71:12.
  • 58. Shaikh FUA, Supit SWM. Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr Build Mater. 2014;70:309-321.
  • 59. Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem Concr Res. 2004;34:1043-9.
  • 60. Bouasria M, Babouri L, Khadraoui F, Chateigner D, Gascoin S, Pralong V, et al. Insight into the partial replacement of cement by ferronickel slags from New Caledonia. Eur J Environ Civ Eng. 2020;0:1-19.
  • 61. Garbev K, Stemmermann P, Black L, Breen C, Yarwood J, Gasharova B. Structural features of C-S-H(I) and its carbonation in air - a Raman spectroscopic study. Part I: fresh phases. J Am Ceram Soc. 2007;90:900-7.
  • 62. Grangeon S, Claret F, Roosz C, Sato T, Gaboreau S, Linard Y. Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance. J Appl Crystallogr. 2016;49(Pt 3):771-783.
  • 63. Chaou AA, Abdelouas A, Mendili YE, Bouakkaz R, Utsunomiya S, Martin C, et al. Vapor hydration of a simulated borosilicate nuclear waste glass in unsaturated conditions at 50 °C and 90 °C. RSC Adv. 2015;5:64538-49.
  • 64. Livingston RA, Monteiro PJM, Deb SK, Manghnani MH, Ross K. Raman scattering and X-ray diffraction study of the thermal decomposition of an ettringite-group crystal. Phys Chem Miner. 2003;30:31-38.
  • 65. De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41:279-291.
  • 66. Moon J, Oh JE, Balonis M, Glasser FP, Clark SM, Monteiro PJM. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO Al2O3 CaCO3 11H2O. Cem Concr Res. 2012;42:105-110.
  • 67. Li D, Shah SL, Chen T. Analysis of dual-rate inferential control systems. Automatica. 2002;38:1053-9.
  • 68. Kano M, Showchaiya N, Hasebe S, Hashimoto I. Inferential control of distillation compositions: selection of model and control configuration. Control Eng Pract. 2003;11:927-933.
  • 69. Lu N, Yang Y, Gao F, Wang F. Multirate dynamic inferential modeling for multivariable processes. Chem Eng Sci. 2004;59:855-64.
  • 70. Baratti R, Corti S, Servida A. A feed forward control strategy for distillation columns. Artif Intell Eng. 1997;11:405-412.
  • 71. Morejon RA, Principe JC. Advanced search algorithms for information-theoretic learning with kernel-based estimators. IEEE Trans Neural Netw. 2004;15:874-884.
  • 72. Zayani R, Bouallegue R, Roviras D. Levenberg-Marquardt learning neural network for adaptive pre-0 distortion for time-varying HPA with memory in OFDM systems. J Wirl Com Netw. 2008;2008:5.
  • 73. Nervetti G, Soma F. La verifica termoigrometrica delle pareti. Milano: Hoepli; 1982.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19f56081-a28e-42ae-9773-6640735c25ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.