PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrothermal synthesis of zeolites from green container glass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Landfilling and stockpiling unrecycled colored container glass represents a considerable failure in sustainability with respect to the conservation of energy and mineral resources. In this study, the single-step hydrothermal synthesis of low-silica zeolites from a mixture of waste green container glass and aluminum foil (Al:Si = 1) in 4 M NaOH(aq) at 125 °C was followed at 1, 3, 7 and 14 days. The principal phases, sodalite and cancrinite, appeared within 1 day accompanied by minor quantities of hydrogarnet and tobermorite arising from a stoichiometric excess of calcium ions in the parent glass. Products of 63, 67, 71 and 72% crystallinity were obtained at 1, 3, 7 and 14 days, respectively, with partial successive conversion of sodalite to cancrinite over time. Ion-exchange and catalytic applications of sodalite and cancrinite arise from the high anionic charge of the 1:1 ratio of alternating SiO44- and AlO45units within their aluminosilicate frameworks. In this respect, the uptake capacity of the 14-day zeolitic product for Cu2+ and Cd2+ ions (1.58 meq g-1 and 1.66 meq g-1, respectively) was within the expected range for zeolites and compared favorably with those reported for other inorganic sorbents derived from industrial and municipal wastes. The 14-day product was also found to be an effective basic heterogeneous catalyst for the Knoevenagel condensation reaction.
Rocznik
Strony
784--796
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
  • Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
  • Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
  • School of Physics, University of Bristol, Bristol, BS8 1QU, UK
  • Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
Bibliografia
  • AYALA VALDERRAM, D.M., GÓMEZ CUASPUD, J.A., ROETHER, J.A., BOCCACCINI, A.R., 2019. Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials 12, 2032.
  • BINGRE, R., LOUIS, B., NGUYEN, P., 2018. An overview on zeolite shaping technology and solutions to overcome diffusion limitations. Catalysis, 8, 163.
  • BOBIRICĂ, C., SHIM, J.-H., PARK, J.-Y., 2018. Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram. Int. 44, 5886-5893.
  • COLEMAN, N.J., LEE, W.E., SLIPPER, I.J., 2005. Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines. J. Hazard. Mater. B121, 203-213.
  • COLEMAN, N.J., HENCH, L.L., 2000. A gel-derived mesoporous silica reference material for surface analysis by gas sorption 1. Textural features. Ceram. Int. 26, 171-178.
  • COLEMAN, N.J., 2006. Interactions of Cd(II) with waste-derived 11 Å tobermorites. Sep. Purif. Technol. 48, 62-70.
  • COLEMAN, N.J., 2011. 11 Å tobermorite ion exchanger from recycled container glass. Int. J. Environ. Waste Manage. 8, 366-382.
  • COLEMAN, N.J., LI, Q., RAZA, A. 2014. Synthesis, structure and performance of calcium silicate ion exchangers from recycled container glass. Physicochem. Probl. Miner. Process. 50, 5-16.
  • COLEMAN, N.J., HURT, A.P., RAZA, A., 2015. Hydrothermal synthesis of lithium silicate (Li2SiO3) from waste glass: a preliminary study. Physicochem. Probl. Miner. Process. 51, 685-694
  • COLLINS, F., ROZHKOVSKAYA, A., OUTRAM, J.G., MILLAR, G.J., 2020. A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous Mesoporous Mater. 291, 109667.
  • CONRADT, R., 2019. Prospects and physical limits of processes and technologies in glass melting. J. Asian Ceram. Soc. 7, 377-396.
  • CUNDY, C.S., COX, P.A., 2005. The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 82, 1-78.
  • CYCHOSZ, K.A., GUILLET-NICOLAS, R., GARCÍA-MARTÍNEZ, J., THOMMES, M., 2017. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 46, 389-414.
  • DE GISI, S., LOFRANO, G., GRASSI, M., NOTARNICOLA, M., 2016. Characteristics and adsorption capacities of lowcost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 9, 10-40.
  • DENG, Y., FLURY, M., HARSH, J.B., FELMY, A.R., QAFOKUB, O., 2006. Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants. Appl. Geochem. 21, 2049-2063.
  • EL BATAL, H.A.; HASSAAN, M.Y., FANNY, M.A., IBRAHIM, M.M., 2017. Optical and FT infrared absorption spectra of soda lime silicate glasses containing nano Fe2O3 and effects of gamma irradiation. Silicon 9, 511-517.
  • ELMES, V.K., EDGAR, B.N., MENDHAM, A.P., COLEMAN, N.J., 2018. Basic metallosilicate catalysts from waste green container glass. Ceram. Int. 44, 17069-17073.
  • ENGELHARDT, G., MICHEL, D., 1987. High-resolution Solid State NMR of Silicates and Zeolites. John Wiley & Sons, Chichester, UK.
  • ESPEJEL-AYALA, F., CHORA CORELLA, R., MORALES PÉREZ, A., PÉREZ-HERNÁNDEZ, R., RAMÍREZZAMORA, R.M., 2014. Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass. Waste Manage. Res. 32, 1219-1226.
  • FESTA, R.A., THIELE, D.J., 2011. Copper: an essential metal in biology. Curr. Biol. 21, 877-883.
  • GIRO-PALOMA, J., BARRENECHE, C., MALDONADO-ALAMEDA, A., ROYO, M., FORMOSA, J., INÉS FERNÁNDEZ A., CHIMENOS, J.M., 2019. Alkali-activated cements for TES materials in buildings’ envelops formulated with glass cullet recycling waste and microencapsulated phase change materials. Materials 12, 2144.
  • GRAHAM, T.R., DEMBOWSKI, M., MARTINEZ-BAEZ, E., ZHANG, X., JAEGERS, N.R.; HU, J.; GRUSZKIEWICZ, M.S., ET AL., 2018. In situ 27Al NMR spectroscopy of aluminate in sodium hydroxide solutions above and below aturation with respect to gibbsite. Inorg. Chem. 57, 11864-11873.
  • GRBEŠ, A., 2016. A life cycle assessment of silica sand: comparing the beneficiation processes. Sustainability 8, 11.
  • HERIYANTO, PAHLEVANI, F., SAHAJAWALLA, V., 2018. From waste glass to building materials - An innovative sustainable solution for waste glass. J. Clean. Prod. 191, 192-206.
  • HOUSTON, J.R., MAXWELL, R.S., CARROLL, S.A., 2009. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy. Geochem. Trans. 10:1.
  • IZIDORO, J.D.C., FUNGARO, D.A., ABBOTT, J.E., WANG, S., 2013. Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel 103, 827–834.
  • JAIN, D., MISHRA, M., RANI, A., 2012. Synthesis and characterization of novel aminopropylated fly ash catalyst and its beneficial application in base catalysed Knoevenagel condensation reaction. Fuel Process. Technol. 95, 119-126.
  • JAISHANKAR, M., TSETEN, T., ANBALAGAN, N., MATHEW, B.B., BEEREGOWDA, K.N., 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60-72.
  • JAVADIAN, H., GHORBANI, F., TAYEBI, H.-A., ASL, S.M.H., 2015. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arab. J. Chem. 8, 837–849.
  • JOUHARA, H., KHORDEHGAH, N., ALMAHMOUD, S., DELPECH, B., CHAUHAN, A., TASSOU, S.A., 2018. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 6, 268–289.
  • KUWAHARA, Y., KEITA TSUJI, K., OHMICHI, T., KAMEGAWA, T., MORI, K., YAMASHITA H., 2012. Waste-slag hydrocalumite and derivatives as heterogeneous base catalysts. ChemSusChem 5, 1523 – 1532.
  • LIN, C., WANG, D., YE, S., 2019. Synthesis of micro-mesoporous glass-analcime composite structure with soda-lime-silica glass as raw material. Funct. Mater. Lett. 12, 1950021.
  • MAJDINASAB, A.R., YUAN, Q., 2019a. Microwave synthesis of zeolites from waste glass cullet using indirect fusion and direct hydrothermal methods: A comparative study. Ceram. Int. 45, 2400-2410.
  • MAJDINASAB, A.R., YUAN, Q., 2019b. Microwave synthesis of zeolites from waste glass cullet using landfill leachate as a novel alternative solvent. Mater. Chem. Phys. 223, 613-622.
  • MASHAL, K., HARSH, J.B., FLURY, M., FELMY, A.R. 2005. Analysis of precipitates from reactions of hyperalkaline solutions with soluble silica. Appl. Geochem. 20, 1357-1367.
  • MISHRA, A., 2015. Impact of silica mining on environment. J. Geogr. Reg. Plann. 8, 150-156.
  • NG, E.-P., LIM, G.K., KHOO, G.-L., TAN, K.-H., OOI, B.S., ADAM, F., LING, T.C., WONG, K.-L., 2015. Synthesis of colloidal stable Linde Type J (LTJ) zeolite nanocrystals from rice husk silica and their catalytic performance in Knoevenagel reaction. Mater. Chem. Phys. 155, 30-35.
  • PENA, P., RIVAS MERCURY, J.M., DE AZA, A.H., TURRILLAS, X., SOBRADOS, I., SANZ, J., 2008. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures. J. Solid State Chem. 181, 1744-1752.
  • QIU, W., ZHENG, Y., 2009. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chem. Eng. J. 145, 483-488.
  • RÍOS REYES, C.A., WILLIAMS, C., ALARCÓN, O.M.C., 2013. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions. Mater. Res. 16, 424-438.
  • SILVA, R.V., DE BRITO, J., LYE, C.Q., DHIR, R.K., 2017. The role of glass waste in the production of ceramic-based products and other applications: A review. J. Clean. Prod. 167, 346-364.
  • TAKEI, T., OTA, H., DONG, Q., MIURA, A., YONESAKI, Y., KUMADA, N., TAKAHASHI, H., 2012. Preparation of porous material from waste bottle glass by hydrothermal treatment. Ceram. Int. 38, 2153–2157.
  • TAYLOR, J.H., ELMES, V.E., HURT, A.P., COLEMAN, N.J., 2020. Synthesis of feldspathoids and zeolite K–F from waste amber container glass. Mater. Chem. Phys. 246, 122805.
  • TERZANO, R., D’ALESSANDRO, C.; SPAGNUOLA, M., ROMAGNOLI, M., MEDICI, L., 2015. Facile zeolite synthesis from municipal glass and aluminium solid wastes. Clean-Soil Air Water 43, 133-140.
  • VISA, M., CHELARU, A.M., 2014. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl. Surf. Sci. 303, 14–22.
  • WANG, Q., LI, J.-S., POON, C.S., 2019. Recycling of incinerated sewage sludge ash as an adsorbent for heavy metals removal from aqueous solutions. J. Environ. Manage. 247, 509-517.
  • XU, B., SMITH, P., WINGATE, C., DE SILVA, L., 2010. The effect of calcium and temperature on the transformation of sodalite to cancrinite in Bayer digestion. Hydrometallurgy 105, 75-81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19f4aa2c-6e3c-43e5-b018-ed701c02855e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.