Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The presented paper proposes a some concept of an evacuation drone that could pick up the wounded from the battlefield and transport them to their final destination for adequate medical care. The existing state of the art of drones and their equipment is described, as well as the possibility of using current technology to build a new drone. This paper presents a vision of the ‘future/ideal drone’ and the ‘technically/reasonably achievable drone today’, and consequently the levels of its development. The main rationale for choosing a drone configuration, including the basic characteristic sizes, is discussed. In view of the purpose of the drone, i.e. need to perform basic medical activities, current robots used in remote surgery were analysed. Due to the fact that the final version of the drone is to take up the wounded without the participation of a third party, design aspects related to this are presented and examples of solutions are proposed.
Wydawca
Rocznik
Tom
Strony
28--50
Opis fizyczny
Bibliogr. 118 poz., fig.
Twórcy
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2., 00-908 Warsaw, Poland
autor
- Łukasiewicz Research Network, Institute of Aviation, Al. Krakowska 110/114., 02-256 Warsaw, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, ul. Powstancow Warszawy 12., 35-959 Rzeszow, Poland
autor
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, ul. Piastów 19., 70-310 Szczecin, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, ul. Powstancow Warszawy 12., 35-959 Rzeszow, Poland
autor
- B-Technology Sp. z o.o., Jasionka 954E, 36-002 Jasionka, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2., 00-908 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2., 00-908 Warsaw, Polan
autor
- Aerospace Faculty, National Aviation University, 1 Liubomyra Huzara Ave., 03058 Kyiv, Ukraine
autor
- Walker Department of Mechanical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
- EPAM School of Digital Technologies, American University Kyiv, 02000 Kyiv, Ukraine
Bibliografia
- 1. Ukrainian drones empire: What drones Ukraine is using against Russia. https://ukrainefrontlines.com/opinion/investigations/ukrainian-drones-empire-what-drones-ukraine-is-using-against-russia/ (Accessed: 27.09.2024).
- 2. Metni N., Hamel T. A UAV for bridge inspection: Visual servoing control law with orientation limits. Autom. Constr. 2007, 17(1), 3–10.
- 3. Roca D., Lagüela S., Díaz-Vilariño L., Armesto J., Arias P. Low-cost aerial unit for outdoor inspection of building façades. Autom. Constr. 2013, 36, 128–135.
- 4. Irizarry J., Costa D.B. Exploratory study of potential applications of unmanned aerial systems for construction management tasks. J. Manag. Eng. 2016, 32(3), 05016001.
- 5. Nwaogu J.M., Yang Y., Chan A.P.C., Chi H.-L. Application of drones in the architecture, engineering, and construction (AEC) industry. Autom. Constr. 2023, 150, 104827.
- 6. Sziroczak D., Rohacs D., Rohacs J. Review of using small UAV-based meteorological measurements for road weather management. Prog. Aerosp. Sci. 2022, 134, 100859.
- 7. Balaji P., Chennupati S.K., Radha S., Chilakalapudi S.R.K., Katuri R., Mareedu K. Design of UAV (drone) for crop, weather monitoring, and for spraying fertilizers and pesticides. Int. J. Res. Trends Innov. 2018, 3(3), 42–47.
- 8. Kim J., Kim S., Ju C., Son H.I. Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access 2019, 7, 105100–105115.
- 9. Elmeseiry N., Alshaer N., Ismail T. A detailed survey and future directions of unmanned aerial vehicles (UAVs) with potential applications. Aerospace 2021, 8(12), 363.
- 10. Unmanned systems, Medical drone market. https://www.fortunebusinessinsights.com/medical-drone-market-105805 (Accessed: 27.09.2024).
- 11. Puchała K., Moneta G., Szymczyk E., Hutsaylyuk V. The concept and preliminary design of a new drone destined for military rescue/medical missions. Chall. Natl. Def. Contemp. Geopolit. Situat. 2022, 2022(1), 248–253.
- 12. Caproni Ca 50. https://fullfatthings-keyaero.b-cdn.net/sites/keyaero/files/styles/article_body/public/woodwing/2022-07/113039.jpeg?itok=eOsPWA9J (Accessed: 27.09.2024).
- 13. U.S. military has improved mortality since World War II, but there have been some alarming exceptions. https://www.pennmedicine.org/news/news-releases/2020/july/us-military-has-improved-mortality-since-world-war-ii-but-there-have-been-some-alarming-exceptions (Accessed: 27.09.2024).
- 14. Bell H-13 Sioux. https://qph.cf2.quoracdn.net/main-qimg-ba9262546345c30c9288766e88b410f1-lq (Accessed: 27.09.2024).
- 15. Jenkins, D., Vasigh, B. The economic impact of unmanned aircraft systems integration in the United States. Association of Unmanned Vehicle Systems International, Arlington, VA, USA, 2013. https://issuu.com/auvsi/docs/auvsi_economic_report (Accessed: 27.09.2024).
- 16. Air ambulance of the future? https://www.aerosociety.com/news/air-ambulance-of-the-future/ (Accessed: 27.09.2024).
- 17. Model of Ambular Project air ambulance. https://blog.aci.aero/wp-content/uploads/2020/05/49197435557_c3eecc6be4_o-3-952x530.jpg (Accessed: 27.09.2024).
- 18. Fernández-Ruiz I. Drone delivery of defibrillators for sudden cardiac arrest could shorten response times. Nat. Rev. Cardiol. 2021, 18, 740.
- 19. Schierbeck S., Svensson L., Claesson A. Use of a drone-delivered automated external defibrillator in an out-of-hospital cardiac arrest. New Engl. J. Med. 2022, 386(20), 1953–1954.
- 20. Lim J.C.L., Loh N., Lam H.H., Lee J.W., Liu N., Yeo J.W., Ho A.F.W. The role of drones in out-of-hospital cardiac arrest: A scoping review. J. Clin. Med. 2022, 11(19), 5744.
- 21. Lammers D.T., Williams J.M., Conner J.R., Baird E., Rokayak O., McClellan J.M., Bingham J.R., Betzold R., Eckert M.J. Airborne! UAV delivery of blood products and medical logistics for combat zones. Transfusion 2023, 63(S3), S96–S104.
- 22. Zailani M.A.H., Sabudin R.Z.A.R., Rahman R.A., Saiboon I.M., Ismail A., Mahdy Z.A. Drone for medical products transportation in maternal healthcare: A systematic review and framework for future research. Medicine 2020, 99(36), e21967.
- 23. Mora P., Araujo C.A.S. Delivering blood components through drones: A lean approach to the blood supply chain. Supply Chain Forum: Int. J. 2022, 23(2), 113–123.
- 24. Wankmüller C., Kunovjanek M., Mayrgündter S. Drones in emergency response – evidence from cross-border, multi-disciplinary usability tests. Int. J. Disaster Risk Reduct. 2021, 65, 102567.
- 25. López L.B., van Manen N., van der Zee E., Bos S. DroneAlert: Autonomous drones for emergency response. In: Multi-Technology Positioning, Nurmi J., Lohan E.S., Wymeersch H., Seco-Granados G., Nykänen O., Eds., Springer, Cham, Switzerland, 2017, 303–321.
- 26. Khan M.N.H., Neustaedter, C. An exploratory study of the use of drones for assisting firefighters during emergency situations. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4–9 May 2019, 272.
- 27. Subbarao I., Cooper G.P. Drone-based telemedicine: A brave but necessary new world. J. Osteopath. Med. 2015, 115(12), 700–701.
- 28. Nedelea P.L., Popa T.O., Manolescu E., Bouros C., Grigorasi G., Andritoi D., Pascale C., Andrei A., Cimpoesu D.C. Telemedicine system applicability using drones in pandemic emergency medical situations. Electronics 2022, 11(14), 2160.
- 29. Fong B., Fong A.C.M., Tsang K.-F. Capacity and link budget management for low-altitude telemedicine drone network design and implementation. IEEE Commun. Stand. Mag. 2021, 5(4), 74–78.
- 30. Scalea J.R., Pucciarella T., Talaie T., Restaino S., Drachenberg C.B., Alexander C., Qaoud T., Barth R.N., Wereley N.M., Scassero M. Successful implementation of unmanned aircraft use for delivery of a human organ for transplantation. Ann. Surg. 2021, 274(3), e282–288.
- 31. Sage A.T., Cypel M., Cardinal M., Qiu J., Humar A., Keshavjee S. Testing the delivery of human organ transportation with drones in the real world. Sci. Robot. 2022, 7(73), eadf5798.
- 32. Hampson M. Drone delivers human kidney: The organ was flown several kilometers by a drone without incurring damage - [News]. IEEE Spectr. 2019, 56(1), 7–9.
- 33. Gavzy S.J., Scalea J.R. Organ transportation innovations and future trends. Curr. Transpl. Rep. 2022, 9(2), 143–147.
- 34. Daud S.M.S.M., Yusof M.Y.P.M., Heo C.C., Khoo L.S., Singh M.K.C., Mahmood M.S., Nawawi H. Applications of drone in disaster management: A scoping review. Sci. Justice. 2022, 62(1), 30–42.
- 35. Zwęgliński T. The use of drones in disaster aerial needs reconnaissance and damage assessment – Three-dimensional modeling and orthophoto map study. Sustainability 2020, 12(15), 6080.
- 36. Cohen M.C.L., de Souza A.V., Liu K.-B., Yao Q. A timely method for post-disaster assessment and coastal landscape survey using drone and satellite imagery. MethodsX 2023, 10, 102065.
- 37. Seguin C., Blaquière G., Loundou A., Michelet P., Markarian T. Unmanned aerial vehicles (drones) to prevent drowning. Resuscitation 2018, 127, 63–67.
- 38. Slezak D., Tyranska-Fobke A., Robakowska M., Nowak J., Zuratynski P., Ladny J.R., Kraszewski J., Domanska-Sadynica M., Nadolny K. The use of drones in various rescue sectors – an analysis of examples in Poland and in the world. Postęp. Nauk Med. 2018, 31(3), 173–178.
- 39. Ajgaonkar K., Khanolkar S., Rodrigues J., Shilker E., Borkar P., Braz E. Development of a lifeguard assist drone for coastal search and rescue. In: Proceedings of the Global Oceans 2020: Singapore – US Gulf Coast Conference, Biloxi, MS, USA, 5–30 October 2020, 1–10.
- 40. Safe ride standards for casualty evacuation using unmanned aerial vehicles. https://apps.dtic.mil/sti/pdfs/ADA593136.pdf#:~:text=Safe%20Ride%20Standards%20for%20Casualty%20Evacuation%20Using%20Unmanned%20Aerial%20Vehicles (Accessed: 30.09.2024).
- 41. Boeing Unmanned Little Bird. https://www.boeing.com/content/dam/boeing/boeingdotcom/defense/unmanned_little_bird_h-6u/images/ulb_gallery_med_05_960x600.jpg (Accessed: 30.09.2024).
- 42. Kaman KMAX. https://images04.military.com/sites/default/files/styles/full/public/2019-04/kmax-helicopter-yuma-1800.jpg (Accessed: 30.09.2024).
- 43. Fire-Scout-two-pictures.jpg. https://cdn.northrop-grumman.com/-/jssmedia/wp-content/uploads/Fire-Scout-two-pictures.jpg?mw=768&rev=5b30b-dec1c804f7d94e72436586ab26c (Accessed: 30.09.2024).
- 44. AgustaWestland RUAV. https://www.unmannedsystemstechnology.com/wp-content/uploads/2015/09/AgustaWestland-Unmanned-Helicopter.jpg (Accessed: 30.09.2024).
- 45. Piasecki Aircraft X-49A. https://assets.vertical-mag.com/images/online_features/the_need_for_speed/2.jpg (Accessed: 30.09.2024).
- 46. Urban Aeronautics AirMule. https://images.jpost.com/image/upload/c_fill,g_faces:center,h_537,w_822/426405 (Accessed: 30.09.2024).
- 47. Advanced Tactics Black Knight. https://www.advancedtacticsinc.com/images/technology/black-knight-desert-1.png (Accessed: 30.09.2024).
- 48. DPI DP-14. https://www.dragonflypictures.com/wp-content/uploads/2014/06/DP-14-2.jpg (Accessed: 30.09.2024).
- 49. Volocopter. https://cdn.volocopter.com/images/vnrac6vfvrab/5m4UmofaKUdBdfZ1PWpd0y/02ad11c8fba52f46ebfda81e6b587560/Volocopter-flies-at-Oshkosh-EAA-Air-Ventures-scaled.jpg (Accessed: 30.09.2024).
- 50. ADAC Luftrettung Volocopter. https://cdn.volocopter.com/images/vnrac6vfvrab/4e5y-Fr89qwuXnYYKPj8g1Y/97f4eed8330d662caf-2d96a60e256289/adac-volocopter-2020-11.jpg (Accessed: 30.09.2024).
- 51. Ehang 216. https://newatlas.com/aircraft/ehang-216-pilotless-air-taxi-specs/ (Accessed: 30.09.2024).
- 52. XPeng AeroHT Voyager X1 [Internet]. [Accessed on 18 July 2024]. Available online: https://evtol.news/__media/Aircraft%20Directory%20Images%20Wingless%20(Multicopter)/XPeng%20AeroHT%20Voyager%20X1/Xpeng-AeroHT_Voyager-X1-flying.jpg (Accessed: 30.09.2024).
- 53. Jetson ONE [Internet]. [Accessed on 18 July 2024]. Available online: https://media.techeblog.com/images/jetson-one-flying-bike-electric-evtol-take-off.jpg (Accessed: 30.09.2024).
- 54. Joby Aviation S4 [Internet]. [accessed on 18 July 2024]. Available online: https://pbs.twimg.com/media/F3CGO5KXoAAT2Wd?format=jpg&name=4096x4096 (Accessed: 30.09.2024).
- 55. Grzejda R. Modelling nonlinear multi-bolted connections: A case of the assembly condition. In: Proceedings of the 15th International Scientific Conference “Engineering for Rural Development 2016”, Jelgava, Latvia, 25–27 May 2016, 329–335.
- 56. Grzejda R. Modelling nonlinear multi-bolted connections: A case of operational condition. In: Proceedings of the 15th International Scientific Conference “Engineering for Rural Development 2016”, Jelgava, Latvia, 25–27 May 2016, 336–341.
- 57. Grzejda R., Parus A. Health assessment of a multi-bolted connection due to removing selected bolts. FME Trans. 2021, 49(3), 634–642.
- 58. Sałaciński M., Puchała K., Leski A., Szymczyk E., Hutsaylyuk V., Bednarz A., Synaszko P., Kozera R., Olkowicz K., Głowacki D. Technological aspects of a reparation of the leading edge of helicopter main rotor blades in field conditions. Appl. Sci. 2022, 12(9), 4249.
- 59. Grzejda R., Kwiatkowski K., Parus A. Experimental and numerical investigations of an asymmetric multi-bolted connection preloaded and subjected to monotonic loads. Int. Appl. Mech. 2023, 59(3), 363–369.
- 60. Silarski M., Nowakowski M. Performance of the SABAT neutron-based explosives detector integrated with an unmanned ground vehicle: A simulation study. Sensors 2022, 22(24), 9996.
- 61. Tsmots I., Teslyuk V., Łukaszewicz A., Lukashchuk Y., Kazymyra I., Holovatyy A., Opotyak Y. An approach to the implementation of a neural network for cryptographic protection of data transmission at UAV. Drones 2023, 7(8), 507.
- 62. Nowakowski M., Kurylo J., Braun J., Berger G.S., Mendes J., Lima J. Using LiDAR data as image for AI to recognize objects in the mobile robot operational environment. Commun. Comput. Inf. Sci. 2024, 1982, 118–131.
- 63. Nowakowski M., Berger G.S., Braun J., Mendes J., Bonzatto Junior L., Lima J. Advance reconnaissance of UGV path planning using unmanned aerial vehicle to carry out mission in unknown environment. Lect. Notes Netw. Syst. 2024, 978, 50–61.
- 64. Miatliuk K., Lukaszewicz A., Siemieniako F. Coordination method in design of forming operations of hierarchical solid objects. In: Proceedings of the International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008, 2724–2727.
- 65. Lukaszewicz A., Skorulski G., Szczebiot R. Main aspects of training in field of computer-aided techniques (CAX) in mechanical engineering. In: Proceedings of the 17th International Scientific Conference “Engineering for Rural Development 2018”, Jelgava, Latvia, 23–25 May 2018, 865–870.
- 66. Łukaszewicz A., Szafran K., Józwik J. CAx techniques used in UAV design process. In: Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace, Pisa, Italy, 22–24 June 2020, 95–98.
- 67. Replica of the Cornu Helicopter. https://gallery.vtol.org/image/GXCHP (Accessed: 30.09.2024).
- 68. Nicolas Florine’s machine. https://www.vieillestiges.be/uploads/Image/Memorial%20Book/florine8.jpg (Accessed: 30.09.2024).
- 69. Piasecki HRP-1. https://alchetron.com/cdn/piasecki-hrp-rescuer-b57e1c9d-1916-4ce1-bc42-02b7e854943-resize-750.jpeg (Accessed: 30.09.2024).
- 70. McCulloch MC-4. https://en.wikipedia.org/wiki/McCulloch_MC-4#/media/File:McCulloch_YH-30.jpg (Accessed: 30.09.2024).
- 71. Boeing H-47 Chinook. https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Defense.gov_News_Photo_120110-O-JO436-455_-_Rangers_rappel_out_the_back_of_a_CH-47_Chinook_helicopter_while_participating_in_a_combined_arms_live-fire_exercise_near_Fort_Stewart_Ga._on_Jan.jpg/1200px-thumbnail.jpg (Accessed: 30.09.2024).
- 72. C-130J Super Hercules. https://www.lockheed-martin.com/content/dam/lockheed-martin/aero/documents/C-130J/C130JPocketGuide.pdf (Accessed: 30.09.2024).
- 73. Boeing CH-47 Chinook. https://www.helis.com/60s/CH-47-Chinook.php (Accessed: 30.09.2024).
- 74. Szymczyk E., Jachimowicz J., Puchała K., Szymczyk W. Mass optimisation of turbofan engine casing made of sandwich structure. Comput. Assist. Methods Eng. Sci. 2018, 25, 81–88.
- 75. Karpenko M., Nugaras J. Vibration damping characteristics of the cork-based composite material in line with frequency analysis. J. Theor. Appl. Mech. 2022, 60(4), 593–602.
- 76. Szymczyk E., Puchała K., Jachimowicz J., Sałaciński M. Influence of metal foil on interface stress state in CFRP laminate. Solid State Phenom. 2016, 250, 223–231.
- 77. Puchała K., Szymczyk E., Jachimowicz J., Bogusz P. Gradient material model in analysis of mechanical joints of CFRP laminate. AIP Conf. Proc. 2018, 1922(1), 050006.
- 78. Lichoń D., Majka A.R., Lis T. RPAS performance model for fast-time simulation research on integration in non-segregated airspace. Aircr. Eng. Aerosp. Technol. 2023, 95(9), 1392–1402.
- 79. Lichon D. Modelling of flight trajectory of RPAS aircraft in the context of integration according to IFR procedures at the Rzeszow-Jasionka airport. Mechanika w Lotnictwie ML-XVIII. 2018, 79–89.
- 80. Lichoń D. Modelling of the reference STARs procedures in the context of RPAS integration in non-segregated airspace. Aircr. Eng. Aerosp. Technol. 2020, 92(9), 1385–1392.
- 81. Lichoń D., Orkisz M. Models of the reference departure and arrival IFR procedures for the purpose of research in RPAS integration in controlled airspace. J. KONES. 2019, 26(3), 121–128.
- 82. Gomes P. Surgical robotics: Reviewing the past, analysing the present, imagining the future. Robot. Comput.-Integr. Manuf. 2011, 27(2), 261–266.
- 83. Pailhé R. Total knee arthroplasty: Latest robotics implantation techniques. Orthop. Traumatol. Surg. Res. 2021, 107(1S), 102780.
- 84.Kajita Y., Nakatsubo D., Kataoka H., Nagai T., Nakura T., Wakabayashi T. Installation of a Neuromate robot for stereotactic surgery: Efforts to conform to Japanese specifications and an approach for clinical use – Technical notes. Neurol. Med.-Chir. 2015, 55(12), 907–914.
- 85. Stulberg B.N., Zadzilka J.D., Kreuzer S., Kissin Y.D., Liebelt R., Long W.J., Campanelli V. Safe and effective use of active robotics for TKA: Early results of a multicenter study. J. Orthop. 2021, 26, 119–125.
- 86. Lau C.T.K., Chau W.-W., Lau L.C.-M., Ho K.K.-W., Ong M.T.-Y., Yung P.S.-H. Surgical accuracy and clinical outcomes of image-free robotic-assisted total knee arthroplasty. Int. J. Med. Robot. Comput. Assist. Surg. 2023, 19(3), e2505.
- 87. Fontalis A., Raj R.D., Kim W.J., Gabr A., Glod F., Foissey C., Kayani B., Putzeys P., Haddad F.S. Functional implant positioning in total hip arthroplasty and the role of robotic-arm assistance. Int. Orthop. 2023, 47(2), 573–584.
- 88. Schleer P., Drobinsky S., Radermacher K. Evaluation of different modes of haptic guidance for robotic surgery. IFAC-PapersOnLine. 2019, 51(34), 97–103.
- 89. CORI Surgical System. Available online: https://www.smith-nephew.com/en/health-care-professionals/products/orthopaedics/cori#overview (Accessed: 30.09.2024).
- 90. Morita A., Sora S., Nakatomi H., Harada K., Sugita N., Saito N., Mitsuishi M. Medical engineering and microneurosurgery: Application and future. Neurol. Med.-Chir. 2016, 56(10), 641–652.
- 91. Murphy D., Smith J.M., Siwek L., Langford D.A., Robinson J.R., Reynolds B., Seshadri-Kreaden U., Engel A.M. Multicenter mitral valve study: A lateral approach using the da Vinci surgical system. Innov.: Technol. Tech. Cardiothorac. Vasc. Surg. 2007, 2(2), 56–61.
- 92. Schuler P.J., Böhm F., Greve J., Scheithauer M., Hoffmann T.K. Robotic assistant systems for surgical procedures of the anterior skull base. Curr. Dir. Biomed. Eng. 2022, 8(1), 50–53.
- 93. Nawrat Z. Robin heart progress - advances material and technology in surgical robots. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58(2), 323–327.
- 94. Niewola A., Podsędkowski L., Wróblewski P., Zawiasa P., Zawierucha M. Selected aspects of Robin heart robot control. Arch. Mech. Eng. 2013, 60(4), 575–593.
- 95. A Robot like Robin Hood. Available online: https://www.gov.pl/web/nauka/robot-jak-robin-hood (Accessed: 30.09.2024).
- 96. Marinho M.M., Harada K., Morita A., Mitsuishi M. SmartArm: Integration and validation of a versatile surgical robotic system for constrained workspaces. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16(2), e2053.
- 97. Faulkner J., Naidoo R., Arora A., Jeannon J.P., Hopkins C., Surda P. Combined robotic transorbital and transnasal approach to the nasopharynx and anterior skull base: Feasibility study. Clin. Otolaryngol. 2020, 45(4), 630–633.
- 98. Hagn U., Konietschke R., Tobergte A., Nickl M., Jörg S., Kübler B., Passig G., Gröger M., Fröhlich F., Seibold U., Le-Tien L., Albu-Schäffer A., Nothhelfer A., Hacker F., Grebenstein M., Hirzinger G. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int. J. Comput. Assist. Radiol. Surg. 2010, 5(2), 183–193.
- 99. Mayor N., Coppola A.S., Challacombe B. Past, present and future of surgical robotics. Trends Urol. Men’s Health 2022, 13(1), 7–10.
- 100. Friedl W., Chalon M., Reinecke J., Grebenstein M. FRCEF: The new friction reduced and coupling enhanced finger for the Awiwi hand. In: Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea, 3–5 November 2015, 140–147.
- 101. Lin C.-H., Hsiao F.-Y., Hsiao F.-B. Vision-based tracking and position estimation of moving targets for unmanned helicopter systems. Asian J. Control. 2013, 15(5), 1270–1283.
- 102. Ulloa C.C., Orbea D., del Cerro J., Barrientos A. Thermal, multispectral, and RGB vision systems analysis for victim detection in SAR robotics. Appl. Sci. 2024, 14(2), 766.
- 103. Spenko M., Buerger S., Iagnemma K. The DARPA Robotics Challenge Finals: Humanoid robots to the rescue. Springer, Cham, Switzerland, 2018.
- 104. Tokyo Fire Department’s RoboCue. Available online: https://web-japan.org/trends/09_sci-tech/sci100909.html#:~:text=Japanese%20rescue%20robots%20are%20quickly%20moving%20from%20the%20realm%20of (Accessed: 30.09.2024).
- 105. Yoo A.C., Gilbert G.R., Broderick T.J. Military robotic combat casualty extraction and care. In: Surgical Robotics: Systems Applications and Visions, Rosen J., Hannaford B., Satava R., Eds., Springer, Boston, MA, USA, 2011, 13–32. Available online: https://link.springer.com/chapter/10.1007/978-1-4419-1126-1_2#citeas (Accessed: 30.09.2024).
- 106. Zhao Q., Roy R., Spurlock C., Lister K., Wang L. A high-fidelity simulation framework for grasping stability analysis in human casualty manipulation. arXiv:2404.03741, 2024.
- 107. Wright C., Buchan A., Brown B., Geist J., Schwerin M., Rollinson D., Tesch M., Choset H. Design and architecture of the unified modular snake robot. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012, 4347–4354. Available online: https://ieeexplore.ieee.org/document/6225255 (Accessed: 27.09.2024).
- 108. Han S., Chon S., Kim J.Y., Seo J., Shin D.G., Park S., Kim J.T., Kim J., Jin M., Cho J. Snake robot gripper module for search and rescue in narrow spaces. IEEE Robot. Autom. Lett. 2022, 7(2), 1667–1673. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9676464 (Accessed: 27.09.2024).
- 109. Kamegawa T., Akiyama T., Sakai S., Fujii K., Une K., Wang Y., Yoshizaki Y., Gofuku A. Development of a separable search-and-rescue robot composed of a mobile robot and a snake robot. Adv. Robot. 2020, 34(2), 132–139.
- 110. Li D., Zhang B., Xiu Y., Deng H., Zhang M., Tong W., Law R., Zhu G., Wu E.Q., Zhu L. Snake robots play an important role in social services and military needs. Innov. (Camb) 2022, 3(6), 100333.
- 111. Sincak P.J., Prada E., Miková Ľ., Mykhailyshyn R., Varga M., Merva T., Virgala I. Sensing of continuum robots: A review. Sensors 2024, 24(4), 1311.
- 112. Murphy R.R. Human-robot interaction in rescue robotics. IEEE Trans. Syst. Man Cybern., Part C (Appl. Rev.) 2004, 34(2), 138–153.
- 113. Commemorating defenders, past and present. Available online: https://www.misawa.af.mil/News/Photos/igphoto/2001057734/ (Accessed: 27.09.2024).
- 114. Ballistic Resistance of Body Armor NIJ Standard-0101.06. Available online: https://www.ojp.gov/pdffiles1/nij/247281.pdf (Accessed: 27.09.2024).
- 115. Holder E.H., Mason K.V., Sabol W.J. National Institute of Justice Guide: Body Armor. U.S. Department of Justice, Washington, DC, USA, 2014. Available online: https://nij.ojp.gov/library/publications/ballistic-resistance-body-armor-nij-standard-010106 (Accessed: 27.09.2024).
- 116. FAS Full Armor System. Available online: https://uarmprotection.com/product/fas-full-armor-system/?attribute_pa_color=multicam&attribute_pa_protection-level=-type2a&attribute_pa_size=s (Accessed: 24.10.2024).
- 117. Ukrainian bulletproof vest. Available online: https://www.ukrinform.net/rubric-defense/3172279-defense-ministry-develops-bulletproof-vest-according-to-nato-standards.html (Accessed: 24.10.2024).
- 118. NATO Armor Model 77, Comfortable tactical vest. Available online: https://www.marsarmor.com/products/ballistic-vests/military/model-77/ (Accessed: 24.10.2024).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19f22bca-53ba-4091-a9d5-e05897ba34e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.