PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of geophysical signals on coordinate variations GNSS permanent stations in Central Europe

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents an analysis of the extent of the impact of deformations of the earth's crust resulting from geophysical models on changes in the coordinates of Global Navigation Satellite System (GNSS) stations. The author presents the results of analyses of the spatial correlation coefficient of deformation components for the non-tidal atmospheric loading (NTAL), non-tidal ocean loading (NTOL) and hydrological loading (HYDRO) models of geophysical deformation. In addition, the author calculated the correlation coefficients between station's coordinate series to determine whether the deformations of the earth's crust have a more global, large-area (regional scale) or local-range (local scale) impact, limited to the nearest of stations. In addition to correlation coefficients, the author analysed the similarity in periodic components between station coordinates by calculating the coherence between them. The results of the analysis showed that for the height components (Up), we observe the global range of deformation models, and the NTAL deformation has the greatest influence on the change in them. The lack of correlation between coordinate signals for horizontal components may result from specific local conditions in the place of the station, low-resolution of geophysical models and small amplitudes of these signals in relation to noise. An analysis of the coherence coefficients showed that each station coordinates shows completely different periodic components in the North, East and Up directions.
Rocznik
Strony
57--71
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland
Bibliografia
  • Cheng, M., Tapley B. D., 1999, Seasonal variations in low degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observations, J. Geophys. Res.,104, 2667-2681.
  • Cheng, M., Tapley B. D., 2004, Variations in the Earth’s oblateness during the past 28 years, J. Geophys. Res.,109, B09402, doi:10.1029/2004JB003028.
  • Cox, C. M., Chao B. F., 2002, Detection of a large-scale mass redistribution in the terrestrial system since 1998, Science, 297, 831-833.
  • Crétaux J. F., Soudarin L., Davidson F. J., Gennero M. C., Bergé-Nguyen M., & Cazenave A., 2002. Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data. Journal of geophysical research: solid earth, 107(B12), ETG-16.
  • Dong D., Fang P., Bock Y., Cheng M. K., & Miyazaki S. I., 2002. Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research: Solid Earth, 107(B4), ETG-9.
  • Dragert H., James T. S., Lambert A., 2000. Ocean loading corrections for continuous GPS: A case study at the Canadian coastal site Holberg. Geophysical research letters, 27(14), 2045-2048.
  • Hughes C. W., Stepanov V. N., 2004, Ocean dynamics associated with rapid J2 fluctuations: Importance of circumpolar modes and identification of a coherent Arctic mode, J. Geophys. Res.,109, C06002,doi:10.1029/2003JC002176.
  • Ivins E. R., Sammis C. G., Yoder C. F., 1993. Deep mantle viscous structure with prior estimate and satellite constraint. Journal of Geophysical Research: Solid Earth, 98(B3), 4579-4609.
  • Kaczmarek A., Kontny B., 2018a. Estimates of seasonal signals in GNNS time series and environmental loading models with iterative Least-Squares Estimation (iLSE) approach. Acta. Geodyn. Geomater. 15, 131-141.
  • Kaczmarek A., Kontny B., 2018b. Identification of the Noise Model in the Time Series of GNSS Stations Coordinates Using Wavelet Analysis. Remote Sens. 10, 1611.
  • Lambert A., Pagiatakis S. D., Billyard A. P., Dragert H., 1998. Improved ocean tide loading corrections for gravity and displacement: Canada and northern United States. Journal of Geophysical Research: Solid Earth, 103(B12), 30231-30244.
  • Penna N. T., Stewart M. P., 2003. Aliased tidal signatures in continuous GPS height time series. Geophysical Research Letters, 30(23).
  • Tseng T. P., Hwang C., Sośnica K., Kuo C. Y., Liu Y. C., Yeh W. H., 2017. Geocenter motion estimated from GRACE orbits: the impact of F10. 7 solar flux. Advances in Space Research, 59(11), 2819-2830.
  • Yoder C. F., Williams J. G., Dickey J. O., Schutz B. E., Eanes R. J., Tapley B. D., 1983. Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation. Nature, 303(5920), 757.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19edd62c-bb36-4b06-82ff-427c4f52938c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.