PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric optimization of NiFe2O4 nanoparticles synthesized by mechanical alloying

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the Taguchi robust design method is used for optimizing ball milling parameters including milling time, rotation speed and ball to powder weight ratio in the planetary ball milling of nanostructured nickel ferrite powder. In fact, the current work deals with NiFe2O4 nanoparticles mechanochemically synthesized from NiO and Fe2O3 powders. The Taguchi robust design technique of system optimization with the L9 orthogonal array is performed to verify the best experimental levels and contribution percentages (% r) of each parameter. Particle size measurement using SEM gives the average particle size value in the range of 59 – 67 nm. X-ray diffraction using Cu Ka radiation is also carried out to identify the formation of NiFe2O4 single phase. The XRD results suggest that NiFe2O4 with a crystallite size of about 12 nm is present in 30 h activated specimens. Furthermore, based on the results of the Taguchi approach the greatest effect on particle size (42.10 %) is found to be due to rotation speed followed by milling time (37.08 %) while ball to powder weight ratio exhibits the least influence.
Wydawca
Rocznik
Strony
281--291
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Material Synthesis and Characterization Laboratory, Institute of Advanced Nano Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Material Synthesis and Characterization Laboratory, Institute of Advanced Nano Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Materials Engineering Department, Islamic Azad University, Najafabad Branch, Isfahan, Iran
autor
  • Physics Department, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Material Synthesis and Characterization Laboratory, Institute of Advanced Nano Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Bibliografia
  • [1] ZHANG J., SHI J., GONG M., J. Solid State Chem., 182(8) (2009), 2135.
  • [2] SAFARIK I., SAFARIKOVA M., Nanostruct. Mater.,Springer, Vienna, (2002), 1.
  • [3] PILENI M.P., Nat. Mater., 2 (2003), 145.
  • [4] SUN J., ZHOU S., HOU P., YANG Y., WENG J., LI X.,LI M., J. Biomed. Mater. Res. A, 80A (2007), 333.
  • [5] SALAVATI-NIASARI M., DAVAR F., MAHMOUDI T.,Polyhedron, 28 (2009), 1455.
  • [6] MATHEW D.S., JUANG R.S., Chem. Eng. J., 129(2007), 51.
  • [7] KODAMA R.H., BERKOWITZ A.E., MCNIFF E.,FONER J., FONER S., Phys. Rev. Lett., 77 (1996), 394.
  • [8] SRIVASTAVA M., OJHA A.K., CHAUBEY S.,MATERNY A., J. Alloy. Compd., 481 (2009), 515.
  • [9] MAENSIRI S., MASINGBOON C., BOONCHOM B., SUPAPANS., Scripta Mater., 56 (2007), 797.
  • [10] XU Q., WEI Y., LIU Y., JI X., YANG L., GU M., Solid State Sci., 11 (2009) 472.
  • [11] ARULMURUGAN R., VAIDYANATHAN G., SENDHILNATHAN S., JEYADEVAN B., J. Magn. Magn.Mater., 298 (2006), 83.
  • [12] MUTHUSELVAM I.P., BHOWMIK R.N., Solid State Sci.,11 (2009), 719.
  • [13] SURYANARAYANA C., Prog. Mater. Sci.+, 46 (2001), 1.
  • [14] MAURICE D.R., COURTNEY T.H., Metall. Mater.Trans. A, 21 (1990), 289.
  • [15] MAURICE D.R., COURTNEY T.H., Metall. Mater.Trans. A, 26 (1995), 2431.
  • [16] COOK T.M., COURTNEY T.H., Metall. Mater. Trans. A,26 (1995), 2389.
  • [17] ABDELLAOUI M., GAFFET E., J. Alloy. Compd., 209(1994), 351.
  • [18] GARCIA-DIAZ A., PHILIPS D.T., Principles of experimental design and analysis, Chapman and Hall, London,1995.
  • [19] MONTGOMERY D.C., Design and analysis of experiments,4th ed., John Wiley and Sons, New York, 1997.
  • [20] KLUG H.P., ALEXANDER L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley and Sons, New York, 1974.
  • [21] MONSHI A., FOROUGHI M.R., MONSHI M.R., World J. Nano Sci. Eng., 2 (2012), 154.
  • [22] GHEISARI KH., JAVADPOUR S., OH J.T., GHAFFARI M., J. Alloy. Compd., 472 (2009), 416.
  • [23] CULLITY B.D., Elements of X-ray Diffraction, Addison Wesley Pub. Co. Inc., 1956, 42.
  • [24] QI W.H., WANG M.P., Mater. Chem. Phys., 88 (2004),280.
  • [25] ROY R.K., A Primer on the Taguchi Method, 2nd ed.,Society of Manufacturing Engineers, 2010.
  • [26] ROSS P.J., TAGUCHI G., Techniques for Quality Engineering,McGraw-Hill, New York, 1988.
  • [27] PAIVA-SANTOS C.O., GOUVEIA H., LAS W.C.,VARELA J.A., Mater. Struct., 6 (1999), 111.
  • [28] ROSS P.J., Taguchi Techniques for Quality Engineering,2nd ed., McGraw-Hill, Singapore, 1996.
  • [29] BENDELL A., DISNEY J., PRIDMORE W.A., Taguchi Methods: Applications in World Industry, IFS Publications,UK, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19ed4c4c-d95e-4a9f-8167-0c1abe1b0624
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.