PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A New Effective Algorithm for Mechanical Assembly Sequence Planning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new approach for searching the most favourable mechanical assembly sequence. The proposed method is described and its basic modules are presented. The concept is based on the assumption that the method should help the engineer in specifying the best assembly sequence with the short possible time calculation, taking into account the principles of design for assembly at an early stage of development of the product design. The algorithm for generating an accurate assembly sequence was described in detail and its application on real-life example was presented.
Twórcy
  • Institute of Mechanical Engineering, University of Zielona Góra, ul. Prof. Szafrana 4, 65-516 Zielona Góra, Poland
  • Institute of Mathematics, University of Zielona Góra, ul. Prof. Szafrana 4, 65-516 Zielona Góra, Poland
  • Institute of Materials and Biomedical Engineering, University of Zielona Góra, ul. Prof. Szafrana 4,, 65-516 Zielona Góra, Poland
  • Department of Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Institute of Logistics and Transport, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia
Bibliografia
  • 6. Anderson D.M. 2010, Design for Manufacturability & Concurrent Engineering, CIM Press. doi: 10.1.1.193.5357.
  • 7. Bahubalendruni, M.R., and B.B. Biswal. 2016. A review on assembly sequence generation and its automation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(5), 824–838. doi:10.1177/0954406215584633.
  • 8. Baldwin, D.F., T.E. Abell, M.C. Lui, T.L. de Fazio, and D.E. Whitney. 1991. An integratedcomputer aid for generating and evaluating assembly sequences for mechanical products. The International Journal of Advanced Manufacturing Technology, 7(1), 78–89. doi:10.1260/1748-3018.5.1.57.
  • 9. Booker, J.D., M. Raines, and K.G. Swift. 2001. Designing Capable and Reliable Products. Buterworth- Heinemann. doi: 10.1016/B978-0-7506- 5076-2.X5000-4.
  • 10. Boothroyd, G., and P. Dewhurst. 1991. Design for Assembly. Boothroyd Dewhurst Inc.Wakefield. doi: 10.1109/6.275164
  • 11. Daabub, A.M., and H.S. Abdalla. 1999. A Computer-based Intelligent System for Design for Assembly. Computers & Industrial Engineering, 37, 111–115. doi: 10.1016/S0360-8352(99)00034-0.
  • 12. Dalvi, S. D. 2016. Optimization of Assembly Sequence Plan Using Digital Prototyping and Neural Network. Procedia Technology, 23, 414–422. doi: 10.1016/j.protcy.2016.03.045.
  • 13. De Fazio, T.L., and D.E. Whitney. 1987. Simplified generation of all mechanical assembly sequences. IEEE Journal of Robotics and Automation, 3(6), 640–656. doi: 10.1109/JRA.1987.1087132.
  • 14. Demoly, F., S.Gomes, B. Eynard, X.T. Yan, and D. Kiritsis. 2014. Concurrent Product Design and Assembly Sequence Planning: A Comprehensive Framework. Advances in Computers and Information in Engineering Research, Volume 1. ASME Press. doi: 10.1115/1.860328 ch12.
  • 15. Gottipolu, R.B., and K. Ghosh. 1997. Representation and selection of assembly sequences in computer aided assembly process planning. International Journal of Production Research, 35(12), 3447 01503465. doi: 10.1080/002075497194183.
  • 16 Management, 12(3), 320–335. doi: 10.1111/j.1937- 5956.2003.tb00206.x. 11
  • 17. Kim, S., J.W. Baek, S.K. Moon, and S.M. Jeon. 2015. A new approach for product design by integrating assembly and disassembly sequence structure planning. Paper presented at the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Springer, Cham, Volume 1, 247–257. doi: 10.1007/978- 3-319-13359-1 20.
  • 18. Kretschmer, R., A. Pfouga, S. Rulhoff, and J. Stjepandi¨Az. 2017. Knowledge-based design for assembly in agile manufacturing by using Data Mining methods. Advanced Engineering Informatics, 33, 285–299. doi: 10.1016/j.aei.2016.12.006.
  • 19. Li, X., K. Qin, B. Zeng, L. Gao, and J. Su. 2016. Assembly sequence planning based on an improved harmony search algorithm. The International Journal of Advanced Manufacturing Technology, 84(9- 12), 2367–2380. doi: 10.1007/s00170-015-7873-9.
  • 20. Marconnet, B., F. Demoly, D. Monticolo, and S. Gomes. 2017. An assembly oriented design and optimization approach for mechatronic system engineering. International Journal for Simulation and Multidisciplinary Design Optimization, 8, A7. doi: 10.1051/smdo/2016016.
  • 21. Meng, G.J., and D.C. Yang. 2018. Assembly Sequence Planning Based on Genetic-ant Colony Algorithm. Modular Machine Tool & Automatic Manufacturing Technique, 4, 037. doi: 10.1108/ AA- 1-2016-143.. Ketzenberg, M., G. Souza, and V.D.R. Jr. Guide. 2003. Mixed assembly and disassembly operations for remanufacturing. Production and Operations
  • 22. Murali, G.B., B.B.V.L. Deepak, and B.B. Biswal. 2017. A Novel Design for Assembly Approach for Modified Topology of Industrial Products. International Journal of Performability Engineering, 13(7), 1013. doi: 10.23940/ijpe.17.07.p2.10131019.
  • 23. Radkowski, R., J. Herrema, and J. Oliver. 2015. Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human- Computer Interaction, 31(5), 337–349. doi: 10.1080/10447318.2014.994194.
  • 24. Redford, A.H., and J. Chal. 1994. Design for Assembly: Principles and Practice. McGraw-Hill. doi: 10.1002/qre.4680110514.
  • 25. Romeo, M.Marian, H.S. Lee, and K. A. Luong. 2006. A genetic algorithm for the optimisation of assembly sequences. Computers & Industrial Engineering, 50, 503–527. doi: 10.1016/j.cie.2005.07.007.
  • 26. Sabadka D., Molnár V., Fedorko G., Jachowicz T. Optimization of production processes using the yamazumi method. Advances in Science and Technology Research Journal 2017 (11), 4, 175-182.
  • 27. Sanderson, A.C., L.S. Homem de Mello, and H. Zhang. 1990. Assembly sequence planning. AI Mag, 11(1), 62–81. doi: 10.1609/aimag.v11i1.824.
  • 28. Qiang, Su. 2007. Computer aided geometric fea- sible assembly sequence planning and optimizing. The International Journal of Advanced Manufacturing Technology, 33, 48–57. doi: 10.1007/ s00170-006-0447- 0.
  • 29. Sasiadek, M. 2013. Computer aided mechanical assembly sequence planning. Paper presented at the 7th International Conference on Research and Practical Issues of Enterprise Information Systems – CON- FENIS 2013. Prague, Czech Republic. 2013 .- Linz: Trauner Verlag, 335–343.
  • 30. Sasiadek, M. 2015(a). Assembly Sequence Planning with the Principles of Design for Assembly. Paper presented at the 20th International Conference on Engineering Design (ICED 15) Vol 4: Design to X, Milan, Italy, 31–40.
  • 31. Sasiadek, M. 2015(b). Planning and analysis of mechanical assembly sequences in design engineering – part I: the method. Technical Gazette 22(2), 337–342.
  • 32. Sasiadek, M. 2015(c). Planning and analysis of mechanical assembly sequences in design engineering – part II: application. Technical Gazette 22(3), 643–648.
  • 33. Wang, H., R. Yiming, and X. Dong. 2014. Mechanical assembly planning using ant colony opti- mization. Computer-Aided Design 47, 59–71. doi: 10.1016/j.cad.2013.09.001. 12
  • 34. Wen-Chin Chen, Hsu Yung-Yuan, Hsieh Ling-Feng, and Tai Pei-Hao. 2010. A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN. Expert Systems with Applications: An International Journal, v.37 n.1, 716–726. doi: 10.1016/j.eswa.2009.05.098.
  • 35. Whitney, D.E. 2004. Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development. Oxford University Press. doi: 10.1108/ aa.2006.26.2.167.1.
  • 36. Xiaoming, Z., Pingan, D. A model-based approach to assembly sequence planning. Int J Adv ManufTechnol 39, 983–994 (2008). https://doi. org/10.1007/s00170-007-1272-9
Uwagi
Błędna numeracja bibliografii (od nr 6 do 36). Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19e95a1d-778f-472e-8735-2c6b2290e200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.