PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanomedicine - a boon for respiratory disease management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Respiratory diseases affect the lungs and other parts of the respiratory system. The respiratory disease affects hundreds of millions of humans, and premature death is observed in nearly four million people yearly. The major cause of the increase in this disease is the increased level of air pollution and higher tobacco usage in public places. Design/methodology/approach: We have used the search engines PubMed and Google Scholar for the keywords Respiratory diseases, Nanomaterials, diagnosis, Nanomedicine, and Target drug delivery; recent and relevant articles are selected for reviewing this paper. Findings: Nanomedicine is a recent field of research that deals with monitoring, repairing, theragnosis, and development of human biological systems at the sub-atomic level, where we utilize engineered nanodevices and nanostructures. The conventional therapeutic strategies designed for respiratory diseases have limited solubility and bioavailability. Moreover, the robust effect of the drugs led to adverse side effects due to their high dose requirement. The local delivery of therapeutic Nanoparticles (NPs) or drug-loaded nano vehicles to the lung is a safe technique for managing various respiratory tract-related diseases like chronic obstructive pulmonary diseases, cystic fibrosis, lung cancer, tuberculosis, asthma, and infection. To overcome the difficulties of conventional treatment with antibiotics and anti-inflammatory drugs, nano-enabled drug delivery, nanoformulations of drugs as well as drug nanoencapsulation have been used recently. In this mini-review, we will discuss the importance and application of nanomedicine for diagnosis, treatment and clinical research involved in the different types of respiratory diseases. Practical implications: Nanomedicine provides an alternative delivery of drugs with the help of various nanocarriers, which enhances controlled drug delivery at the pulmonary region and can be used for treating and diagnosing respiratory diseases in vivo and in vitro studies. Further experiments followed by clinical examination are warranted to prove the potential application of nanomedicine in treating respiratory disease. Originality/value: This mini-review will help the readers and budding scientists apply new methods for developing highly efficient drugs with low side effects and improved targeted sites of action.
Rocznik
Strony
71--85
Opis fizyczny
Bibliogr. 74 poz.
Twórcy
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
autor
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
Bibliografia
  • [1] Forum of International Respiratory Societies, The Global Impact of Respiratory Disease, Second Edition, European Respiratory Society, Sheffield, 2017.
  • [2] H. Swai, B. Semete, L. Kalombo, P. Chelule, K. Kisich, B. Sievers, Nanomedicine for respiratory diseases, WIREs Nanomedicine and Nanobiotechnology 1/3 (2009) 255-263. DOI: https://doi.org/10.1002/wnan.33
  • [3] B. Amanzadi, E. Mirzaei, G Hassanzadeh, P. Mahdaviani, S Boroumand, M. Abdollahi, A.H. Abdolghaffari, R.F. Majidi, Chitosan-based layered nanofibers loaded with herbal extract as wound-dressing materials on wound model studies, Biointerface Research in Applied Chemistry 9/4 (2019) 3979-3986. DOI: https://doi.org/10.33263/BRIAC94.979986
  • [4] P.K. Gaur, H. Pal, D. Puri, N. Kumar, S.K. Shanmugam, Formulation and development of hesperidin loaded solid lipid nanoparticles for diabetes, Biointerface Research in Applied Chemistry 10/1 (2020) 4728-4733. DOI: https://doi.org/10.33263/BRIAC101.728733
  • [5] S. Ghosh, K. Girigoswami, A. Girigoswami, Membrane-encapsulated camouflaged nanomedicines in drug delivery, Nanomedicine 14/15 (2019) 2067- 2082. DOI: https://doi.org/10.2217/nnm-2019-0155
  • [6] N. Akhtar, S.K. Metkar, A. Girigoswami, K. Girigoswami. ZnO nanoflower based sensitive nano-biosensor for amyloid detection, Materials Science and Engineering: C 78 (2017) 960-968. DOI: https://doi.org/10.1016/j.msec.2017.04.118
  • [7] P. Sharmiladevi, V. Haribabu, K. Girigoswami, S.F. Abubacker, A. Girigoswami, Effect of Mesoporous Nano Water Reservoir on MR Relaxivity, Scientific Reports 7 (2017) 11179. DOI: https://doi.org/10.1038/s41598-017-11710-2
  • [8] A. Girigoswami, W. Yassine, P. Sharmiladevi, V. Haribabu, K. Girigoswami, Camouflaged Nanosilver with Excitation Wavelength Dependent High Quantum Yield for Targeted Theranostic, Scientific Reports 8/1 (2018) 16459. DOI: https://doi.org/10.1038/s41598- 018-34843-4
  • [9] S.K. Metkar, K. Girigoswami, Diagnostic Biosensors in Medicine - a Review, Biocatalysis and Agricultural Biotechnology 17 (2019) 271-283. DOI: https://doi.org/10.1016/j.bcab.2018.11.029
  • [10] P. Sharmiladevi, N. Akhtar, V. Haribabu, K. Girigoswami, S. Chattopadhyay, A. Girigoswami, Excitation Wavelength Independent Carbon Decorated Ferrite Nanodots for Multimodal Diagnosis and Stimuli Responsive Therapy, ACS Applied Bio Materials 2/4 (2019) 1634-1642. DOI: https://doi.org/10.1021/acsabm.9b00039
  • [11] V. Haribabu, K. Girigoswami, P. Sharmiladevi, A. Girigoswami, Water-Nanomaterials Interaction to Escalate Twin-mode Magnetic Resonance Imaging, ACS Biomaterials Science and Engineering 6/8 (2020) 4377-4389. DOI: https://doi.org/10.1021/acsbiomaterials.0c00409
  • [12] K. Girigoswami, A. Girigoswami, A Review on Role of Nanosensors in Detecting Cellular miRNA Expression in Colorectal Cancer, Endocrine, Metabolic and Immune Disorders 21/1 (2021) 12-26. DOI: https://doi.org/10.2174/1871530320666200515115723
  • [13] O. Mukhopadhyay, S. Dhole, B.K. Mandal, F.R.N. Khan, Y.C. Ling, Synthesis, characterization and photocatalytic activity of Zn2+, Mn2+ and Co2+ doped SnO2 nanoparticles, Biointerface Research in Applied Chemistry 9/5 (2019) 4199-4204. DOI: https://doi.org/10.33263/BRIAC95.199204
  • [14] A.J. Omlor, J. Nguyen, R. Bals, Q.T. Dinh, Nanotechnology in respiratory medicine, Respiratory Research 16/1 (2015) 64. DOI: https://doi.org/10.1186/s12931-015-0223-5
  • [15] H. Arzani, M. Adabi, J. Mosafer, F. Dorkoosh, M. Khosravani , H. Maleki, H. Nekounam, M. Kamali, Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells, Biointerface Research in Applied Chemistry 9/5 (2019) 4225-4231. DOI: https://doi.org/10.33263/BRIAC95.225231
  • [16] Z. Afsharian, K.K. Darani, Application of nanoclays in food packaging, Biointerface Research in Applied Chemistry 10/1 (2020) 4790-4802. DOI: https://doi.org/10.33263/BRIAC101.790802
  • [17] M. Bahadori, F. Mohammadi, Nanomedicine for respiratory diseases, Tanaffos 11/4 (2012) 18-22.
  • [18] U. Pison, T. Welte, M. Giersig, D.A. Groneberg, Nanomedicine for respiratory diseases, European Journal of Pharmacology 533/1-3 (2006) 341-350. DOI: https://doi.org/10.1016/j.ejphar.2005.12.068
  • [19] H.S. Choi, Y. Ashitate, J.H. Lee, S.H. Kim, A. Matsui, N. Insin, M.G. Bawendi, M.S. Behnke, J.V. Frangioni, A. Tsuda, Rapid translocation of nanoparticles from the lung airspaces to the body, Nature Biotechnology 28/12 (2010) 1300-1303. DOI: https://doi.org/10.1038/nbt.1696
  • [20] A.K Mohammad, L.K. Amayreh, J.M. Mazzara, J.J. Reineke, Rapid lymph accumulation of polystyrene nanoparticles following pulmonary administration, Pharmaceutical Research 30/2 (2013) 424-434. DOI: https://doi.org/10.1007/s11095-012-0884-4
  • [21] A.A. Faraj, A.S. Shaik, S. Afzal, B.A. Sayed, R. Halwani, MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles, International Journal of Nano-medicine 9/1 (2014) 1491-1503. DOI: https://doi.org/10.2147/IJN.S59394
  • [22] J. Gao, L. Li, X. Liu, R. Guo, B. Zhao, Contrast-enhanced magnetic resonance imaging with a novel nano-size contrast agent for the clinical diagnosis of patients with lung cancer, Experimental and Therapeutic Medicine 15/6 (2018) 5415-5421. DOI: https://doi.org/10.3892/etm.2018.6112
  • [23] M.A. Markus, J. Napp, T. Behnke, M. Mitkovski, S. Monecke, C. Dullin, S. Kilfeather, R. Dressel, U. Resch-Genger, F. Alves, Tracking of Inhaled Near- Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation, ACS Nano 9/12 (2015) 11642-11657. DOI: https://doi.org/10.1021/acsnano.5b04026
  • [24] P. Gong, X. He, K. Wang, W. Tan, W. Xie, P. Wu, H. Li, Combination of functionalized nanoparticles and polymerase chain reaction-based method for SARS-CoV gene detection, Journal of Nanoscience and Nanotechnology 8/1 (2008) 293-300. DOI: https://doi.org/10.1166/jnn.2008.18130
  • [25] R.C. Stringer, S. Schommer, D. Hoehn, S.A. Grant, Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of porcine reproductive and respiratory syndrome virus, Sensors and Actuators B: Chemical 134/2 (2008) 427- 431. DOI: https://doi.org/10.1016/j.snb.2008.05.018
  • [26] X. Xu, R. Zhang, F. Liu, J. Ping, X. Wen, H. Wang, K. Wang, X. Sun, H. Zou, B. Shen, L. Wu, 19F MRI in orthotopic cancer model via intratracheal administration of ανβ3-targeted perfluorocarbon nanoparticles, Nanomedicine 13/20 (2018) 2551-2562. DOI: https://doi.org/10.2217/nnm-2018-0051
  • [27] J. Griesser, G. Hetényi, C. Federer, C. Steinbring, H. Ellemunter, K. Niedermayr, A.B. Schnürch, Highly mucus permeating and zeta potential changing self-emulsifying drug delivery systems: A potent gene delivery model for causal treatment of cystic fibrosis, International Journal of Pharmaceutics 557 (2019) 124- 134. DOI: https://doi.org/10.1016/j.ijpharm.2018.12.048
  • [28] N. Vij, S. Fang, P.L. Zeitlin. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications, The Journal of Biological Chemistry 281/25 (2006) 17369-17378. DOI: https://doi.org/10.1074/jbc.M600509200
  • [29] N. Vij, T. Min, R. Marasigan, C.N. Belcher, S. Mazur, H. Ding, K.T. Yong, I. Roy, Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis, Journal of Nanobiotechnology 8 (2010) 22. DOI: https://doi.org/10.1186/1477-3155-8-22
  • [30] J.S. Guthi, S.G. Yang, G. Huang, S. Li, C. Khemtong, C.W. Kessinger, M. Peyton, J.D. Minna, K.C. Brown, J. Gao, MRI-Visible Micellar Nanomedicine for Targeted Drug Delivery to Lung Cancer Cells, Molecular Pharmaceutics 7/1 (2010) 32-40. DOI: https://doi.org/10.1021/mp9001393
  • [31] X. Wang, H. Chen, X. Zeng, W. Guo, Y. Jin, S. Wang, R. Tian, Y. Han, L. Guo, J. Han, Y. Wu, L. Mei, Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system, Acta Pharmaceutica Sinica B 9/1 (2019) 167-176. DOI: https://doi.org/10.1016/j.apsb.2018.08.006
  • [32] S. Kan, D.M. Hariyadi, C. Grainge, D. Knight, N.W. Bartlett, M. Liang, Airway epithelial-targeted nanoparticles for asthma therapy, American Journal of Physiology. Lung Cellular and Molecular Physiology 318/3 (2020) L500-L509. DOI: https://doi.org/10.1152/ajplung.00237.2019
  • [33] L. Wang, M. Feng, Q. Li, C. Qiu, R. Chen, Advances in nanotechnology and asthma, Annals of Translational Medicine 7/8 (2019) 180. DOI: https://doi.org/10.21037/atm.2019.04.62
  • [34] C. Velino, F. Carella, A. Adamiano, M. Sanguinetti, A. Vitali, D. Catalucci, F. Bugli, M. Iafisco, Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis, Frontiers in Bioengineering and Biotechnology 7 (2019) 406. DOI: https://doi.org/10.3389/fbioe.2019.00406
  • [35] E.R. Sutherland, R.M. Cherniack, Management of chronic obstructive pulmonary disease, The New England Journal of Medicine 350/26 (2004) 2689- 2697. DOI: https://doi.org/10.1056/NEJMra030415
  • [36] A. Trapani, S.D. Gioia, S. Castellani, A. Carbone, G. Cavallaro, G. Trapani, M. Conese, Nanocarriers for respiratory diseases treatment: recent advances and current challenges. Current Topics in Medicinal Chemistry 14/9 (2014) 1133-1147. DOI: https://doi.org/10.2174/1568026614666140329225817
  • [37] S. Walton, D. Rogers, Tracheal Reconstruction, in: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing 2021 Jan., Updated 2021 Aug 1, ebook, Available from: https://www.ncbi.nlm.nih.gov/books/NBK564393/
  • [38] H.G. Auchincloss, C.D. Wright, Complications after tracheal resection and reconstruction: prevention and treatment. Journal of Thoracic Disease 8/2 (2016) S160-S167. DOI: https://doi.org/10.3978/j.issn.2072- 1439.2016.01.86
  • [39] S. Liao, C.A. Vacanti, K. Kojima, 6.8 Cartilage Regeneration in Reconstructive Surgery, in: P. Ducheyne (ed), Comprehensive Biomaterials II, vol. 6, Elsevier, Amsterdam, 2017, 135-141. DOI: https://doi.org/10.1016/B978-0-08-100691-7.00047-1.
  • [40] A.L.D. Silva, F.F. Cruz, P. Rocco, M.M. Morales, New perspectives in nanotherapeutics for chronic respiratory diseases, Biophysical Reviews 9/5 (2017) 793-803. DOI: https://doi.org/10.1007/s12551-017-0319-x
  • [41] B. Yang, H. Choi, S.H. Kim, H.J. Yoon, H. Lee, How will nanotechnology lead to better control of asthma?, Annals of Translational Medicine 7/20 (2019) 515. DOI: https://doi.org/10.21037/atm.2019.09.129
  • [42] M. Kumar, X. Kong, A.K. Behera, G.R. Hellermann, R.F. Lockey, S.S. Mohapatra, Chitosan IFN-gamma-pDNA Nanoparticle (CIN) Therapy for Allergic Asthma, Genetic Vaccines and Therapy 1/1 (2003) 3. DOI: https://doi.org/10.1186/1479-0556-1-3
  • [43] A.L.D. Silva, L.A. Silva, F.F. Cruz, P. Rocco, M.M. Morales, Application of novel nanotechnologies in asthma, Annals of Translational Medicine 8/5 (2020) 159. DOI: https://doi.org/10.21037/atm.2019.12.40
  • [44] V. Ong, V. Mei, L. Cao, K. Lee, E.J. Chung, Nanomedicine for Cystic Fibrosis, SLAS Technology 24/2 (2019) 169-180. DOI: https://doi.org/10.1177/2472630318824334
  • [45] M. Doroudian, R. MacLoughlin, F. Poynton, A. Prina- Mello, S.C. Donnelly, Nanotechnology based therapeutics for lung disease, Thorax 74/10 (2019) 965-976. DOI: https://doi.org/10.1136/thoraxjnl-2019- 213037
  • [46] F.A. Almughem, A.M. Aldossary, E.A. Tawfik, M.N. Alomary, W.S. Alharbi, M.Y. Alshahrani, A.A. Alshehri, Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies, Pharmaceutics 12/7 (2020) 616. DOI: https://doi.org/10.3390/pharmaceutics12070616
  • [47] M. Marangi, G. Pistritto, Innovative Therapeutic Strategies for Cystic Fibrosis: Moving Forward to CRISPR Technique, Frontiers in Pharmacology 9 (2018) 396. DOI: https://doi.org/10.3389/fphar.2018.00396
  • [48] M.E. Chirgwin, M.R. Dedloff, A.M. Holban, M.C. Gestal, Novel Therapeutic Strategies Applied to Pseudomonas aeruginosa Infections in Cystic Fibrosis, Materials 12/24 (2019) 4093. DOI: https://doi.org/10.3390/ma12244093
  • [49] J. McDonald, "Smart" polyelectrolyte nanomedicine for cystic fibrosis pneumonia, MSc Thesis, Rutgers University Community Repository, 2019. DOI: https://doi.org/doi:10.7282/t3-wyca-d222
  • [50] J. Vagedes, E. Helmert, S. Kuderer, K. Vagedes, J. Wildhaber, F. Andrasik, The Buteyko breathing technique in children with asthma: a randomized controlled pilot study, Complementary Therapies in Medicine 56 (2021) 102582. DOI: https://doi.org/10.1016/j.ctim.2020.102582
  • [51] R.A. Pauwels, K.F. Rabe, Burden and clinical features of chronic obstructive pulmonary disease (COPD), The Lancet 364/9434 (2004) 613-620. DOI: https://doi.org/10.1016/S0140-6736(04)16855-4
  • [52] D.M. Mannino, A.S. Buist, Global burden of COPD: risk factors, prevalence, and future trends, The Lancet 370/9589 (2007) 765-773. DOI: https://doi.org/10.1016/S0140-6736(07)61380-4
  • [53] M. Geiser, O. Quaile, A. Wenk, C. Wigge, S.E. Berthou, S. Hirn, M. Schäffler, C. Schleh, W. Möller, M.A. Mall, W.G. Kreyling, Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease, Particle and Fibre Toxicology 10 (2013) 19. DOI: https://doi.org/10.1186/1743-8977-10-19
  • [54] M. Passi, S. Shahid, S. Chockalingam, I.K. Sundar, G. Packirisamy, Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases, International Journal of Nanomedicine 15 (2020) 3803- 3826. DOI: http://doi.org/10.2147/IJN.S242516
  • [55] M. Nasiruddin, M. Neyaz, S. Das, Nanotechnology- Based Approach in Tuberculosis Treatment, Tuberculosis Research and Treatment 2017 (2017) 4920209. DOI: https://doi.org/10.1155/2017/4920209
  • [56] J.P. Mathuria, Nanoparticles in Tuberculosis Diagnosis, Treatment and Prevention: A Hope for Future, Digest Journal of Nanomaterials and Biostructures 4/2 (2009) 309-312.
  • [57] R. Pandey, S. Sharma, G.K. Khuller, Nebulization of liposome encapsulated antitubercular drugs in guinea pigs, International Journal of Antimicrobial Agents 24/1 (2004) 93-94. DOI: https://doi.org/10.1016/j.ijantimicag.2004.04.004
  • [58] G. Killivalavan, A.C. Prabakar, K.C.B. Naidu, B. Sathyaseelan, G. Rameshkumar, D. Sivakumar, K. Senthilnathan, I. Baskaran, E. Manikandan, B.R. Rao, Synthesis and characterization of pure and Cu doped CeO2 nanoparticles: photocatalytic and antibacterial activities evaluation. Biointerface Research in Applied Chemistry 10/2 (2020) 5306-5311. DOI: https://doi.org/10.33263/BRIAC102.306311
  • [59] D.A. Bölükbaş, Development of novel nanoparticle-based therapeutics for treatment of lung cancer, PhD Thesis, Ludwig Maximilian University of Munich, Munich, 2017.
  • [60] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y.Y. Broza, S. Billan, R.A. Bortnyak, A. Kuten, H. Haick, Diagnosing lung cancer in exhaled breath using gold nanoparticles, Nature Nanotechnology 4 (2009) 669-673. DOI: https://doi.org/10.1038/nnano.2009.235
  • [61] A. Babu, A.K. Templeton, A. Munshi, R. Ramesh, Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges, Journal of Nanomaterials 2013 (2013) 863951. DOI: https://doi.org/10.1155/2013/863951
  • [62] D. Sharma, G. Jindal, Identifying lung cancer using image processing techniques, Proceedings of the International Conference on Computational Techniques and Artificial Intelligence “ICCTAI'2011”, vol. 17, Penang, Malaysia, 2012, 872-880.
  • [63] L.G. Collins, C. Haines, R. Perkel, R.E. Enck, Lung cancer: diagnosis and management, American Family Physician 75/1 (2007) 56-63.
  • [64] S. Beg, M. Rahman, M.A. Barkat, M.A., F.J. Ahmad (eds), Nanomedicine for the Treatment of Disease: From Concept to Application, First Edition, Apple Academic Press, New York, 2019. DOI: https://doi.org/10.1201/9780429425714
  • [65] B. Vaidya, V. Parvathaneni, N.S. Kulkarni, S.K. Shukla, J.K. Damon, A. Sarode, D. Kanabar, J.V. Garcia, S. Mitragotri, A. Muth, V. Gupta, Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer, International Journal of Biological Macromolecules 122 (2019) 338-347. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.181
  • [66] S. Rajeshkumar, S.V. Kumar, A. Ramaiah, H. Agarwal, T. Lakshmi, S.M. Roopan, Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells, Enzyme and Microbial Technology 117 (2018) 91-95. DOI: https://doi.org/10.1016/j.enzmictec.2018.06.009
  • [67] C. Xu, Y. Wang, Z. Guo, J. Chen, L. Lin, J. Wu, H. Tian, X. Chen, Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy, Journal of Controlled Release 295 (2019) 153-163. DOI: https://doi.org/10.1016/j.jconrel.2018.12.013
  • [68] W. Zhang, W. Xu, Y. Lan, X. He, K. Liu, Y. Liang, Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer, International Journal of Nanomedicine 14 (2019) 5287-5301. DOI: https://doi.org/10.2147/IJN.S203113
  • [69] P.L. Reshma, B.S. Unnikrishnan, G.U. Preethi, H.P. Syama, M.G. Archana, K. Remya, R. Shiji, J. Sreekutty, T.T. Sreelekha, Overcoming drug-resistance in lung cancer cells by paclitaxel loaded galactoxyloglucan nanoparticles, International Journal of Biological Macromolecules 136 (2019) 266-274. DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.075
  • [70] N. Kanipandian, D. Li, S. Kannan, Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using Silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity, Biotechnology Reports 23 (2019) e00339. DOI: https://doi.org/10.1016/j.btre.2019.e00339
  • [71] R. Tanino, Y. Amano, X. Tong, R. Sun, Y. Tsubata, M. Harada, Y. Fujita, T. Isobe, Anticancer Activity of ZnO Nanoparticles against Human Small-Cell Lung Cancer in an Orthotopic Mouse Model ZnO Nanoparticles Inhibit Growth of Small-Cell Lung Cancer, Molecular Cancer Therapeutics 19/2 (2020) 502-512. DOI: https://doi.org/10.1158/1535-7163.MCT-19-0018
  • [72] Y. Song, B. Zhou, X. Du, Y. Wang, J. Zhang, Y. Ai, Z. Xia, G. Zhao, Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP- 1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomedicine and Pharmacotherapy 125 (2020) 109561. DOI: https://doi.org/10.1016/j.biopha.2019.109561
  • [73] M. Reda, W. Ngamcherdtrakul, M.A. Nelson, N. Siriwon, R. Wang, H.Y. Zaidan, D.S. Bejan, S. Reda, N.H. Hoang, N.A. Crumrine, J.P. Rehwaldt, A. Bindal, G.B. Mills, J.W. Gray, W. Yantasee, Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment, Nature Communications 13/1 (2022) 4261. DOI: https://doi.org/10.1038/s41467-022-31926-9
  • [74] X. Hu, K. Saravanakumar, A. Sathiyaseelan, V. Rajamanickam, M.H. Wang, Cytotoxicity of aptamer-conjugated chitosan encapsulated mycogenic gold nanoparticles in human lung cancer cells, Journal of Nanostructure in Chemistry 12/4 (2022) 641-653. DOI: https://doi.org/10.1007/s40097-021-00437-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19e8074b-a9bb-41d6-b7d1-45be3c7aacdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.