PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evolution and mechanical properties of Ti‑15‑3 alloy joint fabricated by submerged friction stir welding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the Ti-15-3 alloy joints were successfully prepared via submerged friction stir welding (SFSW) for the first time. The microstructure evolutions and mechanical properties of the SFSW joints were characterized by electron backscattering diffraction, finite element simulation, microhardness, and tensile tests. The results revealed that the joint included three distinct zones, named as stirring zone (SZ), thermo-mechanically affected zone (TMAZ), and base metal (BM), respectively. During SFSW, the peak temperature (~ 808 °C) and strain in SZ gradually decreased from the upper surface to the bottom surface along the thickness of the as-received plate. Meanwhile, the temperature and strain on the advancing side (AS) were higher than that of the retreating side (RS) within SZ. Comparatively, a slightly low temperature (~ 480 °C) and strain occurred in TMAZ. Due to the high temperature and large strain during SFSW, the grains were significantly refined, and the major grain refinement mechanism of SZ was continuous dynamic recrystallization, while that of TMAZ was coupled by continuous and discontinuous dynamic recrystallization. Note that the ideal shear texture formed in SZ. The shear textures components at the top, center, and bottom of SZ center were D2(112)[111], while that of AS and RS within SZ was D1(112)[111]. Finally, the ultimate tensile strengths of SZ and TMAZ were 854 MPa and 816 MPa, which reached that of 103% and 96% of BM, respectively. In summary, it was an effective method to prepare a uniform and high-performance Ti-15-3 alloy joint through SFSW.
Rocznik
Strony
art. no. e54, 2024
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
autor
  • School of Metallurgical Engineering, National and Local Joint Engineering Research Center for Functional Materials Processing, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, Shaanxi, People’s Republic of China
Bibliografia
  • 1. Anis AL, Talari MK, Babu NK, et al. Grain refinement of Ti-15V-3Cr-3Sn-3Al metastable β titanium alloy welds using boron-modified fillers. J Alloys Compd. 2018;749:320-8. https://doi.org/10.1016/j.jallcom.2018.03.286.
  • 2. Sarkar R, Ghosal P, Muraleedharan K, et al. Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy. Mater Sci Eng A. 2018;528:4819-29. https://doi.org/10.1016/j.msea.2011.03.014.
  • 3. Balachandar K, Sarma VS, Pant B. Microstructure and mechanical properties of gas-tungsten-arc-welded Ti-15-3 beta titanium alloy. Mater Sci Eng A. 2009;40:2685-93. https://doi.org/10.1007/s11661-009-9952-8.
  • 4. Zhang BG, Wang T, Duan XH, et al. Temperature and stress fields in electron beam welded Ti-15-3 alloy to 304 stainless steel joint with copper interlayer sheet. Trans Nonferr Metal Soc. 2012;22:398-403. https://doi.org/10.1016/S1003-6326(11)61190-4.
  • 5. Beygi R, Galvao I, Akhavan-Safar A, et al. Effect of alloying elements on intermetallic formation during friction stir welding of dissimilar metals: a critical review on aluminum/steel. Metal. 2023;13:768. https://doi.org/10.3390/met13040768.
  • 6. Wang W, Han P, Peng P, et al. Friction stir processing of magnesium alloys: a review. Acta Metall Sin-Engl. 2020;33:43-57. https://doi.org/10.1007/s40195-019-00971-7.
  • 7. Pouraliakbar H, Beygi R, Fallah V, et al. Processing of Al-Cu-Mg alloy by FSSP: Parametric analysis and the effect of cooling environment on microstructure evolution. Mater Lett. 2022;308: 131157. https://doi.org/10.1016/j.matlet.2021.131157.
  • 8. Qiao K, Wang KS, Wang J, et al. Microstructural evolution and deformation behavior of friction stir welded twin-induced plasticity steel. J Mater Sci Technol. 2024;169:68-81. https://doi.org/10.1016/j.jmst.2023.05.053.
  • 9. Ishida K, Gao Y, Nagatsuka K, et al. Microstructures and mechanical properties of friction stir welded lap joints of commercially pure titanium and 304 stainless steel. J Alloys Compd. 2015;630:172-7. https://doi.org/10.1016/j.jallcom.2015.01.004.
  • 10. Wang W, Han P, Yuan J, et al. Enhanced mechanical properties of pure zirconium via friction stir processing. Acta Metall Sin-Engl. 2020;33:147-53. https://doi.org/10.1007/s40195-019-00939-7.
  • 11. Pouraliakbar H, Aval HJ, Howells A, et al. Microstructural evolution and mechanical properties of rapidly solidified thin-strip continuous cast AA5182 Al-Mg alloy under varying heat inputs in friction stir welding. Int J Adv Manuf Technol. 2023;129:2921-31. https://doi.org/10.1007/s00170-023-12505-8.
  • 12. Zhang Y, Sato YS, Kokawa H, et al. Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds. Mater Sci Eng A. 2008;485:448-55. https://doi.org/10.1016/j.msea.2007.08.051.
  • 13. Kitamura K, Fujii H, Iwata Y, et al. Flexible control of the microstructure and mechanical properties of friction stir welded Ti-6Al-4V joints. Mater Des. 2013;46:348-54. https://doi.org/10.1016/j.matdes.2012.10.051.
  • 14. Su JQ, Wang JY, Mishra RS, et al. Microstructure and mechanical properties of a friction stir processed Ti-6Al-4V alloy. Mater Sci Eng A. 2013;573:67-74. https://doi.org/10.1016/j.msea.2013.02.025.
  • 15. Feng XL, Liu HJ, Lippold JC. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219. Mater Charact. 2013;177:97-102. https://doi.org/10.1016/j.matchar.2013.05.010.
  • 16. Liu HH, Ushiada K, Fujii H. Elucidation of microstructural evolution of beta-type titanium alloy joint during friction stir welding using liquid CO2 cooling. Mater Charact. 2018;145:490-500. https://doi.org/10.1016/j.matchar.2018.09.005.
  • 17. Cao FJ, Sun T, Hu JP, et al. Enhanced mechanical and anticorrosion properties in cryogenic friction stir processed duplex stainless steel. Mater Des. 2022;225: 111492. https://doi.org/10.1016/j.matdes.2022.111492.
  • 18. Wu LH, Zhang H, Zeng XH, et al. Achieving superior low temperature and high strain rate superplasticity in submerged friction stir welded Ti-6Al-4V alloy. Sci China Mater. 2018;61:417-23. https://doi.org/10.1007/s40843-017-9145-4.
  • 19. Wu LH, Hu XB, Zhang XX, et al. Fabrication of high-quality Ti joint with ultrafine grains using submerged friction stirring technology and its microstructural evolution mechanism. Acta Mater. 2019;166:371-85. https://doi.org/10.1016/j.actamat.2018.12.059.
  • 20. Kim JD, Murugan SP, Kim JW, et al. α/β phase transformation and dynamic recrystallization induced microstructure development in fine-grained Ti-6Al-4V friction stir weld. Mater Charact. 2021;178: 111300. https://doi.org/10.1016/j.matchar.2021.111300.
  • 21. Singh AK, Kaushik L, Singh J, et al. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing. Int J Plast. 2022;150: 103184. https://doi.org/10.1016/j.ijplas.2021.103184.
  • 22. Mironov S, Sato YS, Kokawa H. Microstructural evolution during friction stir welding of Ti-15V-3Cr-3Al-3Sn alloy. Mater Sci Eng A. 2010;527:7498-504. https://doi.org/10.1016/j.msea.2010.08.074.
  • 23. Liu H, Fujii H. Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding. Mater Sci Eng A. 2018;527:140-8. https://doi.org/10.1016/j.msea.2017.11.006.
  • 24. Pierce DT, Jimenez JA, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain hardening evolution of Fe-Mn-Al-Si steels during tensile deformation. Acta Mater. 2015;100:178-90. https://doi.org/10.1016/j.actamat.2015.08.030.
  • 25. Grujicic M, Arakere G, Pandurangan B, et al. Computational analysis and experimental validation of the friction-stir welding behaviour of Ti-6Al-4V. P I Mech Eng B-J Eng. 2011;225:208-23. https://doi.org/10.1177/09544054JEM2013.
  • 26. Peng P, Wang KS, Wang W, et al. Relationship between microstructure and mechanical properties of friction stir processed AISI316L steel produced by selective laser melting. Mater Charact. 2021;163: 110283. https://doi.org/10.1016/j.match ar.2020.110283.
  • 27. Han P, Wang W, Liu ZH, et al. Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing. J Alloys Compd. 2022;907: 164426. https://doi.org/10.1016/j.jallcom.2022.164426.
  • 28. Yoon S, Ueji R, Fujii H. Microstructure and texture distribution of Ti-6Al-4V alloy joints friction stir welded below β-transus temperature. J Mater Process Technol. 2016;22:390-7. https://doi.org/10.1016/j.jmatprotec.2015.09.041.
  • 29. Reynolds AP, Hood E, Tang W. Texture in friction stir welds of Timetal 21S. Scr Mater. 2005;52:491-4. https://doi.org/10.1016/j.scriptamat.2004.11.009.
  • 30. Jain R, Pal SK, Singh SB. Finite element simulation of pin shape influence on material flow, forces in friction stir welding. Int J Adv Manuf Technol. 2018;94:1781-97. https://doi.org/10.1007/s00170-017-0215-3.
  • 31. Hassanamraji N, Eivani AR, Aboutalebi MR. Finite element simulation of deformation and heat transfer during friction stir processing of as-cast AZ91 magnesium alloy. J Mater Res Technol. 2021;17:2998-3017. https://doi.org/10.1016/j.jmrt.2021.08.087.
  • 32. Gupta M, Srivatsan TS. Interrelationship between matrix microhardness and ultimate tensile strength of discontinuous particulate-reinforced aluminum alloy composites. Mater Lett. 2001;51:255-61. https://doi.org/10.1016/S0167-577X(01)00300-7.
  • 33. Wang SL, Zhou BB, Zhang X, et al. Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel. Mater Sci Eng A. 2020;788: 139425. https://doi.org/10.1016/j.msea.2020.139425.
  • 34. Wang SL, Xu LW, Sun T, et al. Effects of process parameters on mechanical performance and interfacial morphology of electromagnetic pulse welded joints between aluminum and galvanized steel. J Mater Res Technol. 2021;10:552-64. https://doi.org/10.1016/j.jmrt.2020.12.047.
  • 35. Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117: 100752. https://doi.org/10.1016/j.pmatsci.2020.100752.
  • 36. Xie C, He JM, Zhu BW, et al. Transition of dynamic recrystallization mechanisms of as-cast AZ31 Mg alloys during hot compression. Int J Plast. 2018;111:211-33. https://doi.org/10.1016/j.ijplas.2018.07.017.
  • 37. Jiang L, Fu HD, Zhang HT, et al. Physical mechanism interpretation of polycrystalline metals’ yield strength via a data-driven method: a novel Hall-Petch relationship. Acta Mater. 2022;231: 117868. https://doi.org/10.1016/j.actamat.2022.117868.
  • 38. Peng Y, Zhu QQ, Guo YH, et al. Effects of alloying elements on the stability and mechanical properties of β-Ti0.5X0.5 (X = V, Cr, Mn, Fe; Nb, Mo, Tc, Ru; Ta, W, Re, Os) alloys according to first-principles calculations. Solid State Commun. 2021;334: 114395. https://doi.org/10.1016/j.ssc.2021.114395.
  • 39. Qi L, He SY, Chen CJ, et al. Diffusional-displacive transformation in a metastable b titanium alloy and its strengthening effect. Acta Mater. 2020;195:151-62. https://doi.org/10.1016/j.actamat.2020.05.058.
  • 40. Ledbetter H, Ogi H, Kai S, et al. Elastic constants of body centered-cubic titanium monocrystals. J Appl Phys. 2004;95:4642-4. https://doi.org/10.1063/1.1688445.
  • 41. Chen W, Zhang JY, Cao S, et al. Strong deformation anisotropies of ω-precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: precipitates shearing vs precipitates disordering. Acta Mater. 2016;117:68-80. https://doi.org/10.1016/j.actamat.2016.06.065.
  • 42. Shitara K, Yokota K, Yoshiya M, et al. Ples design and experimental validation of β-Ti alloys with high solid-solution strengthening and low elasticities. Mater Sci Eng A. 2022;843: 143053. https://doi.org/10.1016/j.msea.2022.143053.
  • 43. Cui LQ, Jiang S, Xu JH, et al. Revealing relationships between microstructure and hardening nature of additively manufactured 316L stainless steel. Mater Des. 2021;198: 109385. https://doi.org/10.1016/j.matdes.2020.109385.
  • 44. Zhu JM, Wu HH, Wang D, et al. Crystallographic analysis and phase field simulation of transformation plasticity in a multifunctional β-Ti alloy. Int J Plast. 2017;189:110-29. https://doi.org/10.1016/j.ijplas.2016.11.006.
  • 45. Ojha A, Sehitoglu H. Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys. Shap Mem Superelasticity. 2016;2:180-95. https://doi.org/10.1007/s40830-016-0061-4.
  • 46. Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607-10. https://doi.org/10.1126/science.11676 41.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19e2412b-6451-4e02-867e-c3c0837c6f3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.