Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Flotation separation of chalcopyrite from talc is difficult because of the natural hydrophobicity of two minerals. In this work, the flotation separation of chalcopyrite from talc using N-carboxymethyl chitosan as a depressant for talc was studied. The micro-flotation results indicated that the flotation separation of chalcopyrite from talc cannot be realized effectively at pH 9 with low concentration of N-carboxymethyl chitosan, in the presence of calcium ions, talc was more efficiently depressed by N-carboxymethyl chitosan, while the chalcopyrite recovery was not influenced. Contact angle, zeta potential and adsorption results showed that Ca2+ and CaOH+ absorbed on the talc surface and increased the absorption amount of N-carboxymethyl chitosan on the mineral surface, and increased hydrophilicity of talc surface, resulting the selective depression for talc in chalcopyrite flotation.
Słowa kluczowe
Rocznik
Tom
Strony
108--115
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
autor
- School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China
autor
- School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China
autor
- Department of Mining Engineering, University of Kentucky, 504 Rose Street, 230 Mining & Mineral Resources Building, Lexington, KY 40506-0107, United State
autor
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
Bibliografia
- BAILEY, L.K., PETERS, E., 1976. Decomposition of pyrite in acids by pressure leaching and anodization: the case of an electrochemical mechanism. Can. Metall. Q. 115(4), 333–334.
- CAI, W. D., WANG, C. H., HAN, B. Q., LIU, W. S., CHU, J. X. 2006. Studies on the complexation of Ca2+ to carboxymethyl chitosan. Chem. Res. Application 18(6), 726-728.
- CHEN, W., LIN, Y. W., LUO, H. B., LI, Y. L. 2006. Complexation of carboxymethyl chitosan with calcium ions. Journal of Fujian Medical University 2000, 34 (2) :163-165.
- DOUILLARD, J.M., SALLES, F., HENRY, M., MALANDRINI, H., CLAUSS, F. Surface energy of talc and chlorite: Comparison between electronegativity calculation and immersion results. J. Colloid Interface Sci. 2007,305, 352–360.
- DING, D. R., 2014. Characteristics about complexation or adsorption of calcium ions onto carboxymethyl chitosan and spectrum analysis. J. Shanghai university of Eng. Sci. Tech. 18(14)298-301 (in Chinese).
- JENKINS, P., RALSTON, J., 1998. The adsorption of a polysaccharide at the talc–aqueous solution interface. Colloids Surfaces A Phys. Eng. Aspects, 139(1), 27-40.
- LIU, G., FENG, Q., Ou, L., LU, Y., ZHANG, G. Adsorption of polysaccharide onto talc. Miner. Eng. 2006, 19,147–153.
- LONG. T. 2011.Theoretical and technical Investigation of strengthening dispersion and synchronous depression for magnesium-silicate minerals in the flotation of copper-nickel sulphide ores. Central South university (PhD thesis).
- MA, X., PAWLIK, M., 2007. The effect of lignosulfonates on the floatability of talc. Int. J. Miner. Process. 83(1–2), 19-27.
- MISHRA, D., BHUNIA, B., BANERJEE, I., DATTA, P., DHARA, S., MAITI, T. K. 2011. Enzymatically crosslinked carboxymethyl-chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Mat. Sci. and Eng. C, 31(7), 1295–1304.
- PAROLIS, L. A. S., MERWE, R. V. D., GROENMEYER, G. V., HARRIS, P. J., 2008. The influence of metal cations on the behaviour of carboxymethyl celluloses as talc depressants. Colloids Surfaces A Phys. Eng. Aspects 317(1–3), 109-115.
- RATH, R. K., SUBRAMANIAN, S., LASKOWSKI, J. S., 1997. Adsorption of dextrin and guar gum onto talc. a comparative study. Langmuir, 13(23), 6260-6266.
- SHORTRIDGE, P. G., HARRIS, P. J., BRADSHAW, D. J., KOOPAL, L. K. 2000. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc. Int. J. Miner. Process. 59(3), 215-224.
- UPADHYAYA, L., SINGH, J., AGARWAL, V., Tewari, R.P. 2013. Biomedical applications of carboxymethyl chitosans. Carbohydrate Polymers. 91(1):452-466.
- VIDAL, C. A. G., PAWLIK, M., 2015. Molecular weight effects in interactions of guar gum with talc. Int. J. Miner. Process. 138(21), 38-43.
- WANG, X., LIU, R., MA, L., OIN, W., JIAO, F., 2016. Depression mechanism of the zinc sulfate and sodium carbonate combined inhibitor on talc. Colloids & Surfaces A Phys. Eng. Aspects, 501, 92-97.
- YEHIA, A. AL-WAKEEL, M. I. 2000. Talc separation from talc-carbonate ore to be suitable for different industrial applications Miner. Eng. 13 ,111–116
- YIN, L., HEI, L., CUI, F., TANG, C., YIN, C. 2007. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials, 28, 1258–1266.
- ZHANG, C., LIU, C., FENG, Q., CHEN, Y. 2017. Utilization of N-carboxymethyl chitosan as selective depressants for serpentine on the flotation of pyrite. Int. J. Miner. Process. 163.45-47
- ZHAO, K., GU, G., WANG, C., RAO, X., WANG, X., XIONG, X., 2015. The effect of a new polysaccharide on the depression of talc and the flotation of a nickel–copper sulfide ore. Miner. Eng. 77, 99-106.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19ddcb4e-0857-4627-9ffc-31bd8d2dd448