PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Multi-objective decision making for Z Coordinator and overcut in μ - EDM process using tungsten carbide electrode for machining of titanium alloy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research on optimization of technological parameters in micro-EDM is very important, and especially results in multi-objective optimization problem. It led to improve machining performance like machining accuracy, reduced electrode wear and improved surface quality. Recent studies mainly refer to the quality indicators of machining productivity and electrode wear, besides that machining accuracy and surface quality are also very important indicators but published results about them is very limited. In this study, Z Co-Ordinate (Z) and overcut (OC) in micro-EDM using tungsten carbide (WC) electrode for Ti-6Al-4V were decided simultaneously by TOPSIS. Technological parameters which include Voltage (V), Capacitance (C) and Response surface methodology (RSM) were investigated in the presented research work. The results showed that the quality parameters Z and OC at optimal conditions were significantly improved. The surface quality behind the micro-EDM is also analyzed and evaluated, and it is good.
Rocznik
Strony
138--149
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Hanoi University of Industry, No. 298, CauDien Street, Bac TuLiem District, Hanoi, Vietnam, Faculty of Mechanical Engineering, Viet Nam
Bibliografia
  • [1] RAMASWAMY A., PERUMAL A.V., 2020, Multi-Objective Optimization of Drilling EDM Process Parameters of LM13 Al Alloy–10ZrB2–5TiC Hybrid Composite Using RSM, J. Braz. Soc. Mech. Sci. Eng., 42, 432, https://doi.org/10.1007/s40430-020-02518-9
  • [2] ABIDI M.H., AL-AHMARIA A.M., UMER U., RASHEED M.S., 2018, Multi-Objective Optimization of Micro-Electrical Discharge Machining of Nickel-Titanium-Based Shape Memory Alloy Using MOGA-II, Measurement, 125, 336–349.
  • [3] AL-AMIN M., ABDUL-RANI A.M., AHMED R., RAO T.V.V.L.N., 2021, Multiple-Objective Optimization of Hydroxyapatite-Added EDM Technique for Processing of 316L-Steel, Materials and Manufacturing Processes, 36/10, 1134–1145, https://doi.org/10.1080/10426914.2021.1885715.
  • [4] EL-TAWEEL T.A., 2009, Multi-Response Optimization of EDM with Al–Cu–Si–TiC P/M Composite Electrode, Int. J. Adv. Manuf. Technol., 44, 100–113, https://doi.org/10.1007/s00170-008-1825-6.
  • [5] CHAUDHARI R., VORA J.J., MANI PRABU S.S., et al., 2019, Multi-Response Optimization of WEDM Process Parameters for Machining of Superelastic Nitinol Shape-Memory Alloy Using a Heat-Transfer Search Algorithm, Materials, 12/8, 1277, https://doi.org/10.3390/ma12081277.
  • [6] KHANNA R., KUMAR A., GARG M.P., et al. 2015, Multiple Performance Characteristics Optimization for Al 7075 on Electric Discharge Drilling by Taguchi Grey Relational Theory, J. Ind. Eng. Int. 11, 459–472, https://doi.org/10.1007/s40092-015-0112-z.
  • [7] PAYAL H., MAHESHWARI S., BHARTI P.S., et al. 2019, Multi-Objective Optimisation of Electrical Discharge Machining for Inconel 825 Using Taguchi-Fuzzy Approach, Int. J. inf. tecnol., 11, 97–105, https://doi.org/10.1007/s41870-018-0102-7.
  • [8] PRAGADISH N., PRADEEP KUMAR M., 2016, Optimization of Dry EDM Process Parameters Using Grey Relational Analysis, Arab. J. Sci. Eng., 41, 4383–4390, https://doi.org/10.1007/s13369-016-2130-6.
  • [9] TIEN L.B., HUU P.N, CUONG N., DUC T.N., 2018, Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232/3, 281-298.
  • [10] KUMAR R., SINGH S., BILGA P.S., et al., 2021, Revealing the Benefits of Entropy Weights Method for Multi-Objective Optimization in Machining Operations: A Critical Review, Journal of Materials Research and Technology, 10, 1471–1492.
  • [11] TAMANG S.K., NATARAJAN N., CHANDRASEKARAN M., 2017, Optimization of EDM Process in Machining Micro Holes for Improvement of Hole Quality, J. Braz. Soc. Mech. Sci. Eng., 39, 1277–1287, https://doi.org/ 10.1007/s40430-016-0630-7.
  • [12] NGUYEN H.P., 2020, Multi-Objective Optimization in Titanium Powder Mixed Electrical Discharge Machining Process Parameters for Die Steels, Alexandria Engineering Journal, 59, 4063-4079, https://doi.org/10.1016/j.aej.2020.07.012
  • [13] PORWAL R.K., YADAVA V., RAMKUMAR J., 2012, Artificial Neural Network Modelling and Multi Objective Optimisation of Hole Drilling Electro Discharge Micro Machining of Invar, Int. J. Mechatronics and Manufacturing Systems, 5, 5/6, 470–494.
  • [14] SAHOOA S.K., THIRUPATHI N., SARASWATHAMMA K., 2020, Experimental Investigation and Multi-Objective Optimization of Die sink EDM Process Parameters on Inconel-625 alloy by using Utility Function Approach, Materials Today: Proceedings, 24, 995–1005.
  • [15] MANIVANNAN R., KUMAR M.P., 2016, Multi-Response Optimization of Micro-EDM Process Parameters on AISI304 Steel Using TOPSIS, J. Mech. Sci. Technol., 30, 137–144, https://doi.org/10.1007/s12206-015-1217-4.
  • [16] RAJ S.O.N., PRABHU S., 2017, Analysis of Multi Objective Optimisation Using TOPSIS Method in EDM Process with CNT Infused Copper Electrode, Int. J. Machining and Machinability of Materials, V, 191, 76–94.
  • [17] MAJUMDER H., KALIPADA M., 2017, Optimization of Machining Condition in WEDM for Titanium Grade 6 Using MOORA Coupled with PCA – A Multivariate Hybrid Approach, Journal of Advanced Manufacturing Systems, 16/2, 81–99.
  • [18] CHANDRASHEKARAPPA M., KUMAR S.J., PIMENOV D.Y., GIASIN K., 2021, Experimental Analysis and Optimization of EDM Parameters on HcHcr Steel in Context with Different Electrodes and Dielectric Fluids Using Hybrid Taguchi-Based PCA-Utility and CRITIC-Utility Approaches, Metals, 11, 419, https://doi.org/10.3390/ met11030419.
  • [19] PADHI P.C., MAHAPATRA S.S., YADAV S.N., TRIPATHY D.K., 2016, Multi-Objective Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Weighted Sum Genetic Algorithm Approach, Journal of Advanced Manufacturing Systems, 15/2, 85–100.
  • [20] PONAPPA K., ARAVINDAN S., RAO P.V., et al., 2010, The Effect of Process Parameters on Machining of Magnesium Nano Alumina Composites Through EDM, Int. J. Adv. Manuf. Technol., 46, 1035–1042, https://doi.org /10.1007/s00170-009-2158-9.
  • [21] TIWARY A.P., PRADHAN B.B., BHATTACHARYYA B., 2014, Application of Multi-Criteria Decision Making Methods for Selection of Micro-EDM Process Parameters, Adv. Manuf., 2, 251–258 https://doi.org/10.1007/s40436-013-0050-1.
  • [22] NADDA R., KUMAR R., SINGH T., CHAUHAN R., PATNAIK A., GANGIL B., 2018, Experimental Investigation and Optimization of Cobalt Bonded Tungsten Carbide Composite by Hybrid AHP-TOPSIS Approach, Alexandria Engineering Journal, 57/4, 3419-3428.
  • [23] SHUKLA A., AGARWAL P., RANA R.S., PUROHIT R., 2017, Applications of TOPSIS Algorithm on Various Manufacturing Processes: A Review, Materials Today, Proceedings, 4, 5320–5329.
  • [24] TOWHIDUL ISLAM NAYIM S.M, HASAN M.Z., JAMWAL A., THAKUR S., GUPTA S., 2019, Recent Trends & Developments in Optimization and modelling of Electro-discharge Machining Using Modern Techniques: A Review, AIP Conference Proceedings, 2148/1, https://doi.org/10.1063/1.5123973.
  • [25] NGUYEN P.H., MUTHURAMALINGAM T., 2021, Multi-Criteria Decision-Making of Vibration-Aided Machining for High Silicon-Carbon Tool Steel with Taguchi-TOPSIS Approach, Silicon, 13/8, 2771–2783.
  • [26] NGUYEN H.P., PHAM V.D. NGO N.V., 2018, Application of TOPSIS to Taguchi Method for Multi-characteristic Optimization of Electrical Discharge Machining with Titanium Powder Mixed into Dielectric Fluid, Int. J. Adv. Manuf. Technol., 98, 1179–1198.
  • [27] MUTHURAMALINGAM T., RAMAMURTHY A., SRIDHARAN K., ASHWIN S., 2018, Analysis of Surface Performance Measures on WEDM Processed Titanium Alloy with Coated Electrodes, Materials Research Express, 5/12, 126503.
  • [28] MUTHURAMALINGAM T., 2019, Measuring the Influence of Discharge Energy on White Layer Thickness in Electrical Discharge Machining Process, Measurement, 131, 694–700.
  • [29] PAUL T., SEMONES V.M. BEDEKAR D.G.B, BATZER S.A., 2004, Tool/Workpiece Chemical Transfer on Standard WC-Co Tool Inserts in Turning on Ti-6A1-4V, Journal of the Mechanical Behavior of Materials, 15, 1–12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19dd24e1-1da6-4d2d-997f-81d36615a484
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.