PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The presence and dosimetry of radon and thoron in a historical, underground metalliferous mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A combination of long term passive, and short term active radon-222, radon-220 and respective progeny measurements were conducted in both traverse and longitudinal axes of a historical metalliferous underground mine in North Queensland, Australia. While the passive monitor results provided average radon and thoron air concentrations over periods of 70-90 days, active measurements over a four day period provided significantly more detail into the dynamics of radon and progeny concentrations in the naturally ventilated mine environment. Passive monitor concentrations for radon and thoron ranged between 60 and 390 Bq m-3 (mean: 140 ±55 Bq m-3) and 140 and 2600 Bq m-3 (mean: 1070 ±510 Bq m-3) respectively, with passive thoron progeny monitors providing a mean concentration of 9 ±5 Bq m-3EEC. Active measurement mean concentrations for radon, thoron, radon progeny and thoron progeny in the centre of the mine drive were 130 ±90 Bq m-3, 300 ±100 Bq m-3, 20 ±20 Bq m-3EEC and 10 ±10 Bq m-3EEC respectively. It was identified that thoron passive detector placement is critical in establishing reliable monitoring data, and is the reason for the discrepancy between the active and passive thoron results in this study. Site specific progeny measurements are required for the accurate estimation of dose to persons entering the mine. Based on short term active measurements and passive thoron progeny monitor results, the dose contribution from thoron and progeny in the mine was observed to contribute up to 80% of the total radon/thoron inhalation dose, and therefore should not be underestimated in monitoring programs under similar conditions.
Słowa kluczowe
EN
radon   thoron   progeny   mines   dose   NORM  
PL
radon   toron   potomstwo   kopalnie   dawka   NORM  
Rocznik
Strony
120--130
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Radiation and Nuclear Sciences, Health Support Queensland, Queensland Department of Health, PO Box 594, Archerfield, Queensland, 4108, Australia
autor
  • Radiation and Nuclear Sciences, Health Support Queensland, Queensland Department of Health, PO Box 594, Archerfield, Queensland, 4108, Australia
autor
  • National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, 263-8555, Japan
autor
  • Department of Geography and Geology, School of the Natural and Built Environment, Faculty of Science, Engineering and Computing, Kingston University, Kingston-uponThames, Penrhyn Road, KT1 2EE, UK
Bibliografia
  • 1. Blevin, P. L. (1989). The tungsten-molybdenum-bismuth hydrothermal mineralising system at Bamford Hill, northeast Queensland, Australia. PhD Thesis. Townsville, Australia: Economic Geology Research Centre, James Cook University.
  • 2. BOM (2018). Mareeba airport climate statistics. Australian Government Bureau of Meteorology. Retrieved 24 Feb, 2018, from http://www.bom.gov.au/climate/ averages/tables/cw_031066.shtml.
  • 3. Chen, J., Moir, D., Sorimachi, A., Janik, M., & Tokonami, S. (2012). Determination of thoron equilibrium factor from simultaneous long-term thoron and its progeny measurements. Radiation Protection Dosimetry, 149(2), 155-158.
  • 4. Cogliano, V. J., Baan, R., Straif, K., Grosse, Y., Lauby-Secretan, B., Ghissassi, E. L., et al. (2011). Preventable exposures associated with human cancers. Journal of the National Cancer Institute, 103(24), 1827-1839.
  • 5. Darby, S., Whitley, E., Silcocks, P., Thakrar, B., Green, M., Lomas, P., et al. (1998). Risk of lung cancer associated with residential radonexposure in south-west England: A case-control study. British Journal of Cancer, 78(3), 394-408.
  • 6. Dixon, D. W. (1996). Exposure to radon during work and leisure activities in caves and abandoned mines. NRPB Report M667. Chilton: NRPB National Radiological Protection Board.
  • 7. FAA. (2017). FAA's civil aerospace medical Institute radiobiology research team, CARI-7. United States of America: Federal Aviation Administration. p. Computer Freeware. Retrieved 24 Feb 2018, from: https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari6/.
  • 8. Gillmore, G. K., Gharib, H. A., Denman, A. R., Phillips, P. S., & Bridge, D. (2011). Radon concentrations in abandoned mines, Cumbria, UK: Safety implications for industrial archaeologists. Natural Hazards and Earth System Sciences, 11, 1311-1318.
  • 9. Gillmore, G. K., Phillips, P., Denman, A., Sperrin, M., & Pearce, G. (2001). Radon levels in abandoned metalliferous mines, Devon, Southwest England. Ecotoxicology and Environmental Safety, 49(1), 281-292.
  • 10. Gillmore, G. K., Sperrin, M., Phillips, P., & Denman, A. (2000a). Radon hazards, geology, and exposure of cave users: A case study and some theoretical perspectives. Ecotoxicology and Environmental Safety, 46(3), 279-288.
  • 11. Gillmore, G. K., Sperrin, M., Phillips, P., & Denman, A. (2000b). Radon-prone geological formations and implications for cave users. Technology, 7(6), 645-655.
  • 12. IAEA. (1987). Preparation and certification of IAEA gamma-ray spectrometry reference materials RGU-1, RGTh-1 and RGK-1. Report IAEA/RL/148. Vienna: International Atomic Energy Agency. Retrieved 13 Jul 2017, from: https://inis.iaea.org/search/search.aspx?orig_q=RN:18088420.
  • 13. ICRP. (2010). Lung cancer risk from radon and progeny and statement on radon. ICRP Publication 115. Annals of the ICRP, 40(1), 1-64.
  • 14. ICRP. (2014). Radiological protection against radon exposure. ICRP Publication 126. Annals of the ICRP, 43(3), 5-73.
  • 15. ICRP. (2017). Occupational intakes of radionuclides: Part 3. ICRP Publication 137. Annals of the ICRP, 46(3-4), 1-486. https://doi.org/10.1177/0146645317734963.
  • 16. Janik, M., Tokonami, S., Kranrod, C., Sorimachi, A., Ishikawa, T., Hosoda, M., et al. (2013). Comparative analysis of radon, thoron and thoron progeny concentration measurements. Journal of Radiation Research, 54(4), 597-610. https://doi.org/10.1093/jrr/rrs129.
  • 17. Kavasi, N., Nemeth, C., Kovacs, T., Tokonami, S., Jobbagy, V., Varhegyi, A., et al. (2007). Radon and thoron parallel measurements in Hungary. Radiation Protection Dosimetry, 123(2), 250-253.
  • 18. Khater, A. E., Hussein, M. A., & Hussein, M. I. (2004). Occupational exposure of phosphate mine workers: Airborne radioactivity measurements and dose assessment. Journal of Environmental Radioactivity, 75(1), 47-57.
  • 19. Lubin, J. H., & Boice, J. D., Jr. (1997). Lung cancer risk from residentual radon: metaanalysis of eight epidemiologic studies. Journal of the National Cancer Institute, 89(1), 49-57.
  • 20. Malins, A., Machida, M., & Saito, K. (2015). Comment on ‘Update of 40K and 226Ra and 232Th series γ-to-dose conversion factors for soil’. Journal of Environmental Radioactivity, 144, 179-180. https://doi.org/10.1016/j.jenvrad.2015.01.009.
  • 21. McLaughlin, J., Murray, M., Currivan, L., Pollard, D., Smith, V., Tokonami, S., et al. (2011). Long-term measurements of thoron, its airborne progeny and radon in 205 dwellings in Ireland. Radiation Protection Dosimetry, 145(2-3), 189-193. https://doi.org/10.1093/rpd/ncr067.
  • 22. Miles, J. C. H., Appleton, J. D., Rees, D. M., Green, B. M. R., Adlam, K. A. M., & Myers, A. H. (2007). Indicative atlas of radon in England and Wales, HPA-RPD-033. Chilton: Health Protection Agency.
  • 23. Misdaq, M. A., & Ouguidi, J. (2011). Concentrations of radon, thoron and their decay products measured in natural caves and ancient mines by using solid state nuclear track detectors and resulting radiation dose to the members of the public. Journal of Radioanalytical and Nuclear Chemistry, 287(1), 135-150.
  • 24. Mudd, G. M. (2008). Radon sources and impacts: A review of mining and non-mining issues. Reviews in Environmental Science and Biotechnology, 7(4), 325-353.
  • 25. Muirhead, C. R., Cox, R., Sather, J. W., MacGibbon, B. H., Edwards, A. A., & Haylock, R. G. E. (1993). Estimates of late radiation risks in the UK population. Documents of the NRPB, 4(4), 15-157.
  • 26. Ningappa, C., Sannappa, J., Chandrashekara, M. S., & Paramesh, L. (2009). Studies on radon/thoron and their decay products in granite quarries around Bangalore city, India. Indian Journal of Physics, 83(8), 1201-1207.
  • 27. Nuccetelli, C., & Bochicchio, F. (1998). The thoron issue: Monitoring activities, measuring techniques and dose conversion factors. Radiation Protection Dosimetry, 78(1), 59-64. https://doi.org/10.1093/oxfordjournals.rpd.a032334.
  • 28. Omori, Y., Prasad, G., Sorimachi, A., Sahoo, S. K., Ishikawa, T., Vidya Sagar, D., et al. (2016). Long-term measurements of residential radon, thoron, and thoron progeny concentrations around the Chhatrapur placer deposit, a high background radiation area in Odisha, India. Journal of Environmental Radioactivity, 162-163, 371-378. https://doi.org/10.1016/j.jenvrad.2016.06.009.
  • 29. Przylibski, T. A. (2001). Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland). Journal of Environmental Radioactivity, 57(2), 87-103.
  • 30. Ramola, R. C., Gusain, G. S., Rautela, B. S., Sagar, D. V., Prasad, G., Shahoo, S., et al. (2012). Levels of thoron and progeny in high background radiation area of southeastern coast of Odisha, India. Radiation Protection Dosimetry, 152(1-3), 62-65. https://doi.org/10.1093/rpd/ncs188.
  • 31. Solli, H. M., Anderson, A., Stranden, E., & Langard, S. (1985). Cancer incidence among workers exposed to radon and thoron daughters at a niobium mine. Scandinavian Journal of Work, Environment & Health, 11(1), 7-13.
  • 32. Stojanovska, Z., Zunic, Z. S., Bossew, P., Bochicchio, F., Carpentieri, C., Venoso, G., et al. (2014). Results from the integrated measurements of indoor radon, thoron and their decay product concentrations in schools in the Republic of Macedonia. Radiation Protection Dosimetry, 162(1-2), 152-156. https://doi.org/10.1093/rpd/ncu249.
  • 33. Tokonami, S., Takahashi, H., Kobayashi, Y., Zhuo, W., & Hulber, E. (2005). Up-to-date radon-thoron discriminative detector for a large scale survey. Review of Scientific Instruments, 76, 3505-3509. https://doi.org/10.1063/1.2132270.
  • 34. Tschiersch, J., & Meisenberg, O. (2010). The HMGU thoron experimental house: A new tool for exposure assessment. Radiation Protection Dosimetry, 141(4), 395-399. https://doi.org/10.1093/rpd/ncq249.
  • 35. UNSCEAR. (2006). United nations scientific committee on the effects of atomic radiation UNSCEAR 2006 report to the general assembly.
  • 36. UNSCEAR. (2017). United nations scientific committee on the effects of atomic radiation UNSCEAR 2017 report to the general assembly.
  • 37. Wheeler, B. W., Allen, J., Depledge, M. H., & Curnow, A. (2012). Radon and skin cancer in south-west england: An ecological study. Epidemiology, 23(1), 44-52. https://doi.org/10.1097/EDE.0b013e31823b6139.
  • 38. WHO. (2018). Radon and health fact sheet (updated june 2016). Retrieved 23 Feb, 2018, from: http://www.who.int/mediacentre/factsheets/fs291/en/.
  • 39. WHO. (2009). WHO handbook on indoor radon: A public health perspective, In H. Zeeb, & F. Shannoun (Eds.). Geneva: World Health Organization.
  • 40. Yamada, Y., Sun, Q., Tokonami, S., Akiba, S., Zhuo, W., Hou, C., et al. (2006). Radonthoron discriminative measurements in Gansu Province, China, and their implication for dose estimates. Journal of Toxicology and Environmental Health, Part a, 69(7), 723-734.
  • 41. Zhuo, W. H., Iida, T., & Hashiguchi, Y. (2000). Integrating measurements of indoor thoron and its progeny concentrations. Proceedings of the interantional radiation protection IRPA-10.
  • 42. Zhuo, W., Iida, T., Moriizumi, J., Aoyagi, T., & Takahashi, I. (2001). Simulation of the concentrations and distributions of indoor radon and thoron. Radiation Protection Dosimetry, 93(4), 357-368.
  • 43. Zhuo, T., Tokonami, S., Yonehara, H., & Yamada, Y. (2002). A simple passive monitor for integrating measurements of indoor thoron concentrations. Review of Scientific Instruments, 73(8), 2877-2881. https://doi.org/10.1063/1.1493233.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19cc1d49-91d6-4b66-a25b-97dd6f6f4833
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.