PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Removal of microplastics in unit processes used in water and wastewater treatment : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Many tons of micro- and nano-sized plastic particles enter the aquatic environment every year, due to increasing plastic production, with the consequent risk of microplastics contaminating our environment. Addressing this multifaceted threat requires innovative technologies that can efficiently remove microplastics from the environment. Therefore, there is an urgent need to study the efficiency of the removal of microplastics by different water and wastewater treatment technologies. After short overviewed the source, occurrence, and potential adverse impacts of microplastics to human health, we then identified promising technologies for microplastics removal, including physical, chemical, and biological approaches. A detailed analysis of the advantages and limitations of different techniques was provided. According to literature data, the performance of microplastics removal is as follows: membrane bioreactor (>99%) > activated sludge process (~98%) > rapid sand filtration (~97.1%) > dissolved air floatation (~95%) > electrocoagulation (>90%) > constructed wetlands (88%). Chemical treatment methods such as coagulation, magnetic separation, Fenton, photo-Fenton and photocatalytic degradation also show moderate to high efficiency of microplastics removal. Hybrid treatment such as the MBR-UF/RO system, coagulation followed by ozonation, adsorption, dissolved air flotation, filtration, and constructed wetlands based hybrid technologies have shown very promising results in the effective removal of microplastics. Lastly, research gaps in this area are identified, and suggestions for future perspectives are provided. We concluded this review with the current challenges and future research priorities, which will guide us through the path addressing microplastics contamination.
Rocznik
Strony
102--128
Opis fizyczny
Bibliogr. 187 poz., rys., tab., wykr.
Twórcy
  • Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
autor
  • Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Bibliografia
  • 1. Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F.J., Dominguez, A.O. & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut., 244, pp. 153–164. DOI: 10.1016/j.envpol.2018.10.039
  • 2. Ahmed, M.B., Rahman, M.S., Alom, J., (...), Zhou, J.L. & Yoon, M.-H. (2021). Microplastic particles in the aquatic environment: A systematic review, Science of The Total Environment, 775, 145793. DOI: 10.1016/j.scitotenv.2021.145793
  • 3. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W. & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol., 214, pp. 836–851. DOI: 10.1016/j.biortech.2016.05.057
  • 4. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S. & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J. Hazard. Mater., 323, pp. 274–298. DOI: 10.1016/j.jhazmat.2016.04.045
  • 5.Akarsu, C. & Deniz, F., 2020. Electrocoagulation/electroflotation process for removal of organics and microplastics in laundry wastewater, CLEAN–Soil, Air, Water, 49, 2000146. DOI: 0.1002/clen.202000146
  • 6. Akbal, F. & Camcı, S. (2011). Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269, pp. 214–222. DOI: 10.1016/j.desal.2010.11.001
  • 7. Alavian Petroody, S. S., Hashemi, S. H. & van Gestel, C. A. M. (2020). Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere 261, 128179. DOI: 10.1016/j.chemosphere.2020.128179
  • 8. Ali, S.S., Qazi, I.A., Arshad, M., Khan, Z., Voice, T.C. & Mehmood, C.T. (2016). Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes, Environ.Nanotechnol. Monit. Manag., 5, pp. 44–53. DOI:10.1016/J.ENMM.2016.01.001
  • 9. Anderson, Z.T., Cundy, A.B., Croudace, I.W., Warwick, P.E., Celis-Hernandez, O. & Stead, J.L. (2018). A rapid method for assessing the accumulation of microplastics in the sea surface microlayer (SML) of estuarine systems, Sci. Rep., 8, 9428. DOI: 10.1038/s41598-018-27612-w
  • 10. Andrady, A.L., (2011). Microplastics in the marine environment, Mar. Pollut. Bull., 62(8), pp. 1596-1605. DOI: 10.1016/j.marpolbul.2011.05.030
  • 11. Antony, A., Low, J.H., Gray, S., Childress, A.E., Le-Clech, P. & Leslie, G. (2011). Scale formation and control in high pressure membrane water treatment systems: A review, J. Membr. Sci., 383, pp. 1–16. DOI: 10.1016/j.memsci.2011.08.054
  • 12. Ariza-Tarazona, M.C., Villarreal-Chiu, J.F., Barbieri, V., Siligardi, C. & Cedillo-González, E.I. (2019). New strategy for microplastic degradation: Green photocatalysis using aprotein-based porous N-TiO2 semiconductor, Ceram. Int., 45, pp. 9618–9624. DOI: 10.1016/j.ceramint.2018.10.208
  • 13. Arossa, S., Martin, C., Rossbach, S. & Duarte, C.M. (2019). Microplastic removal by Red Sea giant clam (Tridacna maxima), Environmental Pollution, 252, pp. 1257–1266. DOI: 10.1016/J.ENVPOL.2019.05.149
  • 14. Atiq, N., Ahmed, S., Ali, M.I., Ahmad, B. & Robson, G. (2010). Isolation and identification of polystyrene biodegrading bacteria from soil, African Journal of Microbiological Research, 4(14), pp. 1537–1541. DOI: 10.5897/AJMR.9000457
  • 15. Auta, H., Emenike, C. & Fauziah, S (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environ. Pollut., 231, pp.1552–1559. DOI: 10.1016/j.envpo l.2017.09.043
  • 16. Auta, H.S., Emenike, C.U., Jayanthi, B. & Fauziah, S.H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment, Marine Pollution Bulletin, 127, pp. 15–21. DOI: 10.1016/j.marpolbul.2017.11.036
  • 17. Bache, D.H. & Gregory R. (2010). Flocs and separation processes in drinking water treatment: a review, Journal of Water Supply: Research and Technology-Aqua, 59 (1), pp. 16–30. DOI: 10.2166/aqua.2010.028
  • 18. Badola, N., Bahuguna, A., Sasson, Y. & Chauhan, J.S. (2022). Microplastics removal strategies: A step toward finding the solution, Front. Environ. Sci. Eng., 16(1): 7, DOI: 10.1007/s11783-021-1441-3
  • 19. Baresel, C., Harding, M. Fång, J. (2019). Ultrafiltration/granulated active carbon-biofilter: efficient removal of a broad range of micropollutants, Applied Sciences, 9(4), 710. DOI: 10.3390/app9040710
  • 20. Barth, M., Wei, R., Oeser, T., Then, J., Schmidt, J., Wohlgemuth, F. & Zimmermann, W. (2015). Enzymatic hydrolysis of polyethylene films in an ultrafiltration membrane reactor, J. Memb. Sci., 494, pp. 182–187. DOI: 10.1016/j.memsci.2015.07.030
  • 21. Bayo, J., López-Castellanos, J. & Olmos, S. (2020a). Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Marine Pollution Bulletin, 156, 111211. DOI:10.1016/j.marpolbul.2020.111211
  • 22. Bayo, J., Olmos, S. & López-Castellanos, J. (2020b). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors, Chemosphere, 238, 124593. DOI: 10.1016/j.chemosphere.2019.124593
  • 23. Blair, R. M., Waldron, S. & Gauchotte-Lindsay, C. (2019). Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Research, 163, 114909. DOI: 10.1016/j.watres.2019.114909
  • 24. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45(4), pp. 4–19. DOI: 10.24425/aep.2019.130237
  • 25. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021). Nano-photocatalysis in water and wastewater treatment, Desalination and Water Treatment, 243, pp. 51–74. DOI: 10.5004/dwt.2021.27867
  • 26. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45(1), pp. 3–18. DOI: 10.24425/aep.2019.126419
  • 27. Bui, X.T., Nguyen, P.T., Nguyen, V.T., Dao, T.S. & Nguyen, P.D. (2020). Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies, Environmental Technology & Innovation, 19, 101013. DOI: 10.1016/j.eti.2020.101013
  • 28. Cai, L., Wang, J., Peng, J., Wu, Z. & Tan, X. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments, Sci. Total Environ., 628, pp. 740–747. DOI: 10.1016/j.scitotenv.2018.02.079
  • 29. Carr, S.A., Liu, J. & Tesoro, A.G. (2016). Transport and fate of microplastic particles in wastewater treatment plants, Water Research, 91, pp. 174–182. DOI: 10.1016/j. watres.2016.01.002
  • 30. Chandra, P. & Enespa, S.D. (2020). Microplastic degradation by bacteria in aquatic ecosystem. in: Microorganisms for sustainable environment and health. Chowdhary, P., Raj, A., Verma, D. & Akhter Y., (Eds.) Elsevier, pp. 431–467. DOI: 10.1016/B978-0-12-819001-2.00022-X
  • 31. Chen, G., Feng, Q. & Wang, J. (2020). Mini-review of microplastics in the atmosphere and their risks to humans, Sci. Total Environ., 703, 135504. DOI: 10.1016/j.scitotenv.2019.135504
  • 32. Chen, R., Qi, M., Zhang, G. Yi, C. (2018). Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield, IOP Conference Series: Earth and Environmental Science, 113, 012208. DOI: 10.1088/1755-1315/113/1/012208
  • 33. Chorghe, D., Sari, M.A. & Chellam, S. (2017). Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations, Water Research, 126, pp. 481–487. DOI: 10.1016/j.watre s.2017.09.057
  • 34. Conley, K., Clum, A., Deepe, J., Lane, H. & Beckingham, B. (2019).Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year, Water Research X, 3, 100030. DOI: 10.1016/j.wroa.2019.100030
  • 35. Coppock, R.L., Cole, M., Lindeque, P.K., Queirós, A.M. & Galloway, T.S. (2017). A small-scale, portable method for extracting microplastics from marine sediments, Environmental Pollution, 230, pp. 829–837. DOI: 10.1016/j.envpol.2017.07.017
  • 36. Corona, E., Martin, C., Marasco, R. & Duarte, C.M. (2020). Passive and active removal of marine microplastics by a mushroom coral (Danafungia scruposa), Frontiers in Marine Science, 7, 128, DOI: 10.3389/fmars.2020.00128
  • 37. Crawford, C. & Quinn, B. (2017). Microplastic separation techniques. In: Microplastic Contaminants. Crawford, C. & Quinn, B. (Eds.). Elsevier, Amsterdam, pp. 203–218. DOI: 10.1016/B978-0-12-809406-8.00009-8
  • 38. Cunha, C., Silva, .L, Paulo, J., Faria, M., Nogueira, N. & Cordeiro, N. (2020). Microalgal-based biopolymer for nano- and microplastic removal: A possible biosolution for wastewater treatment. Environmental Pollution, 263, 114385. DOI: 10.1016/j.envpol.2020.114385
  • 39. Dawson, A.L., Kawaguchi, S., King, C.K., Townsend, K.A., King, R., Huston, W.M. & Bengtson Nash, S.M. (2018). Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill, Nature Communications, 9(1), 1001. DOI: 10.1038/s41467-018-03465-9
  • 40. Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. (2019). The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation, Journal of Hazardous Materials, 380, 120899. DOI: 10.1016/j.jhazmat.2019.120899
  • 41. Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N. & Tassin, B. (2015). Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12(5), pp. 592-599. DOI: 10.1071/EN14167
  • 42. Durenkamp, M., Pawlett, M., Ritz, K., Harris, J.A., Neal, A.L. & McGrath, S.P. (2016). Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function, Environ. Pollut., 211, pp. 399–405. DOI: j.envpol.2015.12.063
  • 43. Edo, C., González-Pleiter, M., Leganés, ., Fernández-Piñas, F. & Rosa,l R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge, Environmental Pollution, 259, 113837. DOI: 10.1016/j.envpol.2019.113837
  • 44. Eerkes-Medrano, D., Thompson, R.C. & Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs, Water Research, 75, pp. 63–82. DOI: 10.1016/j.watres.2015.02.012
  • 45. Enfrin, M., Dumée, L.F. & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – origin, impact and potential solutions, Water Research, 161, pp. 621–638. DOI: 10.1016/j.watres.2019.06.049
  • 46. Ersahin, M.E., Ozgun, H., Dereli, R.K., Ozturk, I., Roest, K. & van Lier, J.B., (2012). A reviewon dynamic membrane filtration: materials. applications and future perspectives, Bioresour. Technol., 122, pp. 196–206. DOI: 10.1016/j.biortech.2012.03.086
  • 47. Eskandarloo, H., Kierulf, A. & Abbaspourrad, A. (2017). Light-harvesting synthetic nano-and micromotors: a review, Nanoscale, 9, pp. 12218–12230. DOI: 10.1039/C7NR05166B
  • 48. Ezugbe, E.O. & Rathilal, S. (2020). Membrane Technologies in Wastewater Treatment: A Review, Membranes, 10, 89. DOI:10.3390/membranes10050089
  • 49. Feng, H.-M., Zheng, J.-C., Lei, N.-Y., Yu, L., Kong, K.H.-K., Yu, H.-Q., Lau, T.-C. & Lam, M.H.W. (2011). Photoassisted Fenton degradation of polystyrene, Environ. Sci. Technol., 45, pp. 744–750. DOI: 10.1021/es102182g
  • 50. Foshtomi, M.Y., Oryan, S., Taheri, M., Bastami, K.D. & Zahed, M.A. (2019). Composition and abundance of microplastics in surface sediments and their interaction with sedimentary heavy metals, PAHs and TPH (total petroleum hydrocarbons), Mar. Pollut. Bull., 149, 110655. DOI:10.1016/j.marpolbul.2019.1
  • 51. Freeman S, Booth A M, Sabbah I, Tiller R, Dierking J, Klun K, Rotter A, Ben-David E, Javidpour J, Angel D L (2020). Between source and sea: The role of wastewater treatment in reducing marine microplastics, Journal of Environmental Management, 266, 110642. DOI: 10.1016/j.jenvman.2020.110642
  • 52. Gerritse, J., Leslie, H.A., de Tender, C.A. Devriese, L.I., & Vethaak, A.D. (2020). Fragmentation of plastic objects in a laboratory seawater microcosm, Sci. Rep., 10, 10945. DOI:10.1038/s41598-020-67927-1
  • 53. Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, Fm (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus, New Biotechnology, 52, pp. 35–41. DOI: 10.1016/j.nbt.2019.04.005
  • 54. Gies, E.A., LeNoble, J.L., Noel, M., Etemadifar, A., Bishay, F., Hall, E.R. & Ross, P.S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull., 133, 553-561. DOI: 10.1016/j.marpolbul.2018.06.006
  • 55. Gimiliani, G.T., Fornari, M., Redígolo, M.M., Willian Vega Bustillos, J O., Moledo de Souza Abessa, D., &Faustino Pires, M.A. (2020). Simple and cost-effective method for microplastic quantification in estuarine sediment: A case study of the Santos and São Vicente Estuarine System, Case Studies in Chemical and Environmental Engineering, 2, 100020. https://doi.org/10.1016/j.cscee.2020.100020
  • 56. Gonzalez-Pleiter, M., Velazquez, D., Edo, C., Carretero, O., Gago, J., Baron-Sola, A., Hernandez, L.E., Yousef, I., Quesada, A., Leganes, F., Rosal, R. & Fernandez-Pi˜nas, F. (2020). Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake, Sci. Total Environ., 722, 137904 DOI:10.1016/j. scitotenv.2020.137904
  • 57. Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D. & Rochman, C.M. (2019). Magnetic extraction of microplastics from environmental samples, Environ. Sci. Technol. Letters, 6, pp. 68–72. DOI: 1021/acs.estlett.8b00671
  • 58. Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo, C.H. & Wong, M.H. (2020). Source, migration and toxicology of microplastics in soil, Environ. Int. 137, 105263. DOI: 10.1016/j.envint.2019.105263
  • 59. Han, M., Niu, X.R., Tang, M., Zhang, B.T., Wang, G.Q., Yue, W.F., Kong, X.L. & Zhu, J.Q. (2020). Distribution of microplastics in surface water of the lower Yellow River near estuary, Sci. Total Environ., 707, 135601 DOI: 10.1016/j. scitotenv.2019.135601
  • 60. Han, X., Lu, X. & Vogt, R.D. (2019). An optimized density-based approach for extracting microplastics from soil and sediment samples, Environmental Pollution, 254, 113009. DOI: 10.1016/j.envpol.2019.113009
  • 61. Harrison, J.P., Sapp, M., Schratzberger, M. & Osborn, A.M. (2011). Interactions between microorganisms and marine microplastics: A call for research, Marine Technology Society Journal, 45(2), pp. 12–20. DOI: 10.4031/MTSJ.45.2.2
  • 62. He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. (2019). Municipal solid waste (MSW) landfill: a source of microplastics?-Evidence of microplastics in landfill leachate, Water Res., 159, pp. 38-45. DOI: 10.1016/j.watres.2019.04.060
  • 63. Helcoski, R., Yonkos, L.T., Sanchez, A. & Baldwin, A.H. (2020). Wetland soil microplastics are negatively related to vegetation cover and stemdensity, Environ. Pollut., 256, 113391. DOI: 10.1016/j.envpol.2019.113391
  • 64. Hermanová, S. & Pumera M. (2022). Micromachines for Microplastics Treatment, ACS Nanosci., 2, pp. 225-232. DOI: 10.1021/acsnanoscienceau.1c00058
  • 65. Hernandez, E., Nowack, B. & Mitrano, D.M. (2017). Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing, Environ. Sci. Technol., 51, pp. 7036-7046. DOI: 10.1021/acs.est.7b01750
  • 66. Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification, Environ. Sci. Technol., 46(6), pp. 3060-3075. DOI: 10.1021/es2031505
  • 67. Hidayaturrahman, H. & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process, Mar. Pollut. Bull., 146, pp. 696–702. DOI: 10.1016/j.marpolbul.2019.06.071
  • 68. Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H. & Laursen, D. (2011). Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches, Mar. Pollut. Bull., 62(8), pp. 1683–1692. DOI: 10.1016/j.marpo lbul.2011.06.004
  • 69. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E. & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities, Sci. Total Environ., 586, pp. 127–141. DOI: 10.1016/j.scitotenv.2017.01.190
  • 70. Howard, G.T., Norton, W.N. & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme, Biodegradation, 23(4), pp. 561–573. DOI: 10.1007/s10532-011-9533-6
  • 71. Jeon, H.J. & Kim, M.N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene, International Biodeterioration & Biodegradation, 115, pp. 244–249. DOI: 10.1016/J.IBIOD.2016.08.025
  • 72. Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K., Zhou, B., Souissi, S., Lee, S.-J. & Lee, J.-S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus), Environ. Sci. Technol., 50 (16), pp. 8849-8857. DOI: 10.1021/acs.est.6b01441
  • 73. Judd, S. (2016). The status of industrial and municipal euent treatment with membrane bioreactor technology, Chem. Eng. J., 305, pp. 37–45. DOI: 10.1016/j.cej.2015.08.141
  • 74. Kalčíková, G., Alič, B., Skalar, T., Bundschuh,M. & Gotvajn, A.Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater, Chemosphere, 188, pp. 25–31. DOI: 10.1016/j.chemosphere.2017.08.131
  • 75. Katrivesis, F.K., Karela, A.D., Papadakis, V.G. & Paraskeva, C.A. (2019). Revisiting of coagulation-flocculation processes in the production of potable water, J. Water Process. Eng., 27, 193–204. DOI: 10.1016/j.jwpe.2018.12.007
  • 76. Kazour, M., Terki, S., Rabhi, K., Jemaa, S., Khalaf, G. & Amara R. (2019). Sources of microplastics pollution in the marine environment: importance of wastewater treatment plant and coastal landfill, Mar. Pollut. Bull., 146 608-618. 10.1016/j.marpolbul.2019.06.066
  • 77. Kima, S., Sin, A., Nam, H., Park, Y., Lee, H. & Han, C. (2022). Advanced oxidation processes for microplastics degradation: A recent trend, Chemical Engineering Journal Advances, 9, 100213. DOI: 10.1016/j.ceja.2021.100213
  • 78. Klavarioti, M., Mantzavinos, D. & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35, pp. 402–417. DOI:10.1016/j.envint.2008.07.009
  • 79. Kole, P.J., Lohr, A.J., Van Belleghem, F. & Ragas, A. (2017). Wear and tear of tyres: a stealthy source of microplastics in the environment, Int. J. Environ. Res. Public Health, 14, 1265. DOI:10.3390/ijerph14101265
  • 80. Lares, M., Ncibi, M.C., Sillanpaa, M. & Sillanpaa, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Research, 133, pp. 236–246. DOI: 10.1016/ j.watres.2018.01.049
  • 81. Lee, Y.K., Murphy, K.R. & Hur, J. (2020). Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives, Environ. Sci. Technol., 54, 11905–11914. DOI: 10.1021/acs.est.0c00942
  • 82. Li, L., Liu, D., Song, K. & Zhou, Y.W. (2020). Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water, Mar. Pollut., Bull., 150, 110724. DOI: 10.1016/j.marpolbul.2019.110724
  • 83. Li, L., Xu, G. & Yu, H. (2018). Dynamic membrane filtration: formation, filtration, cleaning. and applications, Chem. Eng. Technol., 41, pp. 7–18. DOI: 10.1002/ceat.201700095
  • 84. Liang, W., Luo, Y., Song, S., Dong, X. & Yu, X. (2013). High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2, Polym. Degrad. Stab,. 98, pp. 1754–1761. DOI: 1016/j.polymdegradstab.2013.05.027
  • 85. Liu, X., Yuan,W., Di, M., Li, Z. & Wang, J. (2019a). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China, Chem. Eng. J., 362, pp. 176–182. DOI: 10.1016/j.cej.2019.01.033
  • 86. Liu, F.F., Liu, G.Z., Zhu, Z.L., Wang, S.C. & Zhao, F.F. (2019b). Interactions between microplastics and phthalate esters as affected bymicroplastics characteristics and solution chemistry, Chemosphere, 214, 688–694. Doi: 10.1016/j.chemosphere.2018.09.174
  • 87. Liu, F., Vianello, A., Vollertsen, J., (2019c). Retention of microplastics in sediments of urban and highway stormwater retention ponds, Environ. Pollut., 255, 113335. DOI: 10.1016/j.envpol.2019.113335
  • 88. Liu, S.Y., Leung, M.M.L., Fang, J.K.H. & Chua, S.L. (2021). Engineering a microbial ‘trap and release’ mechanism for microplastics removal, Chemical Engineering Journal, 404, 127079. DOI: 10.1016/j.cej.2020.127079
  • 89. Liu, W.L., Wu, Y., Zhang, S.J., Gao, Y.Q., Jiang, Y., Horn, H. & Li, J. (2020). Successful granulation and microbial differentiation of activated sludge in anaerobic/anoxic/aerobic (A2O) reactor with two-zone sedimentation tank treating municipal sewage, Water Research, 178, 115825. DOI: 10.1016/j.watres.2020.115825
  • 90. Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H. & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China, Water Res,. 155, 255-265. DOI: 10.1016/j.watres.2019.02.028
  • 91. de Luna, M.D.G., Veciana, M.L., Su, C.C. & Lu, M.C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, J. Hazard. Mater.. 217, pp. 200–207. DOI: 10.1016/j.jhazmat.2012.03.018
  • 92. Lv, X., Dong, Q., Zuo, Z., Liu, Y., Huang, X. & Wu, W. (2019). Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strategies, J. Clean. Prod., 225, pp. 579–586. DOI: 10.1016/j. jclepro.2019.03.32193.
  • 93. Ma, B., Xue, W., Hu, C., (...), Qu, J. & Li, L., (2019b). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment, Chemical Engineering Journal, 359, pp. 159-167. 10.1016/j.cej.2018.11.155
  • 94. Ma, B., Xue,W., Ding, Y., Hu, C., Li, H. & Qu, J. (2019c). Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment, J. Environ. Sci., 78, pp. 267–275. DOI: 10.1016/j.jes.2018.10.006
  • 95. Ma, J., Zhao, J.H., Zhu, Z.L., Li, L.Q. & Yu, F. (2019a). Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride, Environ. Pollut., 254, 113104 DOI: 10.1016/j.envpol.2019.113104
  • 96. Magni, S., Binelli, A., Pittura, L., Avio, C.G., Della Torre, C., Parenti, C.C. & Gorbi, S., Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant, Sci. Total Environ,. 652, pp. 602–610. DOI: 10.1016/j.scitotenv.2018.10.269
  • 97. Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V. & Avérous, L. (2019). Isolation and characterization of different promising fungi for biological waste management of polyurethanes, Microbial Biotechnology, 12(3), pp. 544–555. DOI: 10.1111/1751-7915.13346
  • 98. Malankowska, M. Echaide-Gorriz, C. & Coronas, J. (2021). Microplastics in marine environment – sources, classification, and potential remediation by membrane technology – A review, Environ. Sci.: Water Res. Technol., 7, pp. 243-258. DOI: 10.1039/D0EW00802H
  • 99. Mason, S.A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink P., Papazissimos, D. & Rogers D.L (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent, Environ. Pollut., 218, pp. 1045–1054. DOI: 10.1016/j. envpol.2016.08.056
  • 100. Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S. & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode, J. Hazard. Mater., 399, 123023. DOI: 10.1016/j.jhazmat.2020.123023
  • 101. Michielssen, M.R., Michielssen, E.R., Ni, J. & Duhaime, M.B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed, Environmental Science: Water Research & Technology, 2(6), pp. 1064–1073, DOI: 10.1039/C6EW00207B
  • 102. Mintenig, S., Int-Veen, I., Loder, M.G., Primpke, S. & Gerdts, G.,(2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Res., 108, pp. 365-372. DOI: 10.1016/j.watres.2016.11.015
  • 103. Mohan, D., Sarswat, A., Ok, Y.S. & Pittman Jr., C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review, Bioresour. Technol., 160, pp. 191–202. DOI: 10.1016/j.biortech.2014.01.120
  • 104. Moraczewska-Majkut, K., Nocoń, W., Zyguła, M. & Wiśniowska, E. (2020). Quantitative analysis of microplastics in wastewater during selected treatment processes, Desal. Water Treat., 199, pp. 352-361. DOI:10.5004/dwt.2020.26019
  • 105. Moraczewska-Majkut, K., Nocoń, W. & Łobos-Moysa, E. (2021). The occurrence of microplastics in wastewater and the possibilities of using separation methods to reduce this contamination at the WWTP, Des. Water Treat., 243, pp. 37-43. DOI: 10.5004/dwt.2021.27860
  • 106. Moussa, D.T., El-Naas, M.H., Nasser, M. & Al-Marri, M.J. (2017). A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage., 186, pp. 24–41. DOI: 10.1016/j.jenvman.2016.10.032
  • 107. Mrowiec B. (2017). Plastic pollutants in water environment, Environmental Protection and Natural Resources, 28, (74), pp. 51-55. DOI 10.1515/oszn-2017-0030
  • 108. Mrowiec B. (2018). Plastics in the circular economy (CE), Environmental Protection and Natural Resources, 29, (78), pp. 16-19. DOI 10.2478/oszn-2018-0017
  • 109. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environ. Sci. Technol., 50(11), pp. 5800–5808. DOI: 10.1021/acs.est.5b05416
  • 110. Murphy, J. (2001). Additives for plastics handbook. Elsevier, Amsterdam, DOI: 10.1016/b978-1-85617 -370-4.x5000 -3
  • 111. Nakamiya, K., Hashimoto, S., Ito, H., Edmonds, J.S., Yasuhara, A. & Morita, M. (2005). Microbial treatment of bis (2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria. Journal of Bioscience and Bioengineering, 99(2): 115–119. DOI: 10.1263/JBB.99.115
  • 112. Napper, I.E. & Thompson, R.C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions, Mar.Pollut. Bull., 112, pp. 39–45. DOI: 1016/j.marpolbul.2016.09.025
  • 113. Narciso-Ortiz, L., Coreño-Alonso, A., Mendoza-Olivares, D., Lucho-Constantino, C.A. & Lizardi-Jiménez, M.A. (2020). Baseline for plastic and hydrocarbon pollution of rivers, reefs, and sediment on beaches in Veracruz State, México, and a proposal for bioremediation, Environmental Science and Pollution Research, 27(18), pp. 23035–23047. DOI: 10.1007/s11356-020-08831-z
  • 114. Ngo, P.L., Pramanik, B.K., Shah, K. & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants, Environmental Pollution, 255(2), 113326, DOI: 10.1016/j.envpol.2019.113326
  • 115. Nizzetto, L., Futter, M. & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol., 50(20), pp. 10777–10779. DOI: 10.1021/acs.est.6b04140
  • 116. Nocoń, W., Moraczewska-Majkut, K. & Wiśniowska E. (2018). Microplastics in surface water under strong anthropopression, Desal. Water Treat., 134, pp. 174-181. DOI: 10.5004/dwt.2018.22833
  • 117. Odusanya, S.A., Nkwogu, J.V., Alu, N., Etuk Udo, G.A., Ajao, J.A., Osinkolu, G.A. & Uzomah, A.C. (2013). Preliminary studies on microbial degradation of plastics used in packaging potable water in Nigeria, Nigerian Food Journal, 31(2), pp. 63–72. DOI: 10.1016/S0189-7241(15)30078-3
  • 118. Olivatto, G.P., Martins, M.C. T., Montagner, C.C., Henry, T.B. & Carreira, R.S. (2019). Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil, Marine Pollution Bulletin, 139, pp. 157–162. DOI: 10.1016/j.marpolbul.2018.12.042
  • 119. Oprea, S. & Doroftei, F. (2011). Biodegradation of polyurethane acrylate with acrylated epoxidized soybean oil blend elastomers by Chaetomium globosum, International Biodeterioration & Biodegradation, 65(3), pp. 533–538. DOI: 10.1016/j.ibiod.2010.09.011
  • 120. Orr, I.G., Hadar, Y. & Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber, Applied Microbiology and Biotechnology, 65(1), pp. 97–104. DOI: 10.1007/s00253-004-1584-8
  • 121. Osman, M., Satti, S.M., Luqman, A., Hasan, F., Shah, Z. & Shah, A.A. (2018). Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil, Journal of Polymers and the Environment, 26(1), pp. 301–310. DOI: 10.1007/s10924-017-0954-0
  • 122. Östman, M., Björlenius, B., Fick, J. & Tysklind, M. (2019). Effect of full-scale ozonation and pilot-scale granular activated carbon on the removal of biocides, antimycotics and antibiotics in a sewage treatment plant, Sci. Total Environ., 649, pp. 1117–1123. DOI: 10.1016/j.scitotenv.2018.08.382
  • 123. Ostrovsky, I., Yacobi, Y. & Koren, N. (2014). Sedimentation Processes, In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. DOI.org/10.1007/978-94-017-8944-8_27
  • 124. Ouyang, Z., Yang, Y., Zhang, C., Zhu, S., Qin, L., Wang, W., He, D., Zhou, Y., Luo, H. & Qin, F. (2021). Recent Advances in Photocatalytic Degradation of Plastics and Plastic-Derived Chemicals, Journal of Materials Chemistry A, 9 (23), pp. 13402−13441. DOI: 10.1039/D0TA12465F
  • 125. Paço, A., Duarte, K., da Costa, J.P., Santos, P.S.M., Pereira, R., Pereira, M.E., Freitas, A.C., Duarte, A.C. & Rocha-Santos, T.A.P. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum, Science of the Total Environment, 586, pp. 10–15. DOI: 10.1016/j.scitotenv.2017.02.017
  • 126. Padervand, M., Lichtfouse E., Robert, D. & Wang C. (2020). Removal of microplastics from the environment. A review, Environmental Chemistry Letters, 18(3), pp. 807-828. DOI: 10.1007/s10311-020-00983-1
  • 127. Perren, W., Wojtasik, A. & Cai, Q (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3), pp. 3357–3364. DOI: 10.1021/acsom ega.7b020 37
  • 128. Plastics Europe 2022, access 15.09.2022 https://www.plasticseurope.org
  • 129. Poerio, T., Piacentini, E. & Mazzei, R. (2019). Membrane processes for microplastic removal, Molecules, 24, 4148, DOI:10.3390/molecules24224148
  • 130. Pohl, A., Tytła, M., Kernert, J., Bodzek M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic water reservoir – Comprehensive analysis, Desalination and Water Treatment, 258, pp. 207–222, DOI:10.5004/dwt.2022.28459
  • 131. Pramanik, B.K., Pramanik, S.K. & Monira S. (2021). Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes, Chemosphere, 282, 131053. DOI: 10.1016/j.chemosphere.2021.131053
  • 132. Prata, J.C., da Costa, J.P., Lopes, I., Duarte, A.C. & Rocha-Santos, T. (2020). Environmental exposure to microplastics: an overview on possible human health effects, Sci. Total Environ., 702, 134455. DOI: 10.1016/j.scitotenv.2019.134455
  • 133. Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T. & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water, Sci. Total Environ., 643, pp.1644-1651. DOI: 10.1016/j.scitotenv.2018.08.102
  • 134. Qi, K., Cheng, B., Yu, J. & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727, pp. 792–820. DOI: 10.1016/j.jallcom.2017.08.142
  • 135. Rezania, S., Park, J., Din, M.F.M., Taib, S.M., Talaiekhozani, A., Yadav, K.K. & Kamyab, H. (2018). Microplastics pollution in different aquatic environments and biota: A review of recent studies, Mar. Pollut. Bull., 133, pp. 191–208. DOI: 10.1016/j.marpolbul.2018.05.022
  • 136. Riffat, R., (2013). Fundamentals of wastewater treatment and engineering, Taylor & Francis Group.
  • 137. Rios, L.M., Moore, C, & Jones P.R. (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment, Mar, Pollut, Bull., 54(8), pp. 1230–1237. https ://doi.org/10.1016/j.marpolbul.2007.03.022
  • 138. Rocher, V., Paffoni, C., Goncalves, A., Gu´erin, S., Azimi, S., Gasperi, J., Moilleron, R., Pauss, A., 2012. Municipal wastewater treatment by biofiltration: comparisons of various treatment layouts. Part 1: assessment of carbon and nitrogen removal, Water Sci. Technol., 65, pp. 1705–1712. DOI: 10.2166/wst.2012.105
  • 139. Rummel, C.D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment, Environ. Sci. Technol. Lett., 4, 258-267. DOI: 0.1021/acs.estlett.7b00164
  • 140. Saboor F.H.,, Hadian-Ghazvini, S. & Torkashvand M. (2022). Microplastics in Aquatic Environments: Recent Advances in Separation Techniques, Periodica Polytechnica Chemical Engineering, 66(2), pp. 167–181,. DOI: 10.3311/PPch.18930
  • 141. Sarmah, P. & Rout, J. (2019). Cyanobacterial degradation of low-density polyethylene (LDPE) by Nostoc carneum isolated from submerged polyethylene surface in domestic sewage water, Energy, Ecology & Environment, 4(5), pp. 240–252. DOI: 10.1007/s40974-019-00133-6
  • 142. Shi, C., Zhang, S., Zhao, J., Ma, J., Wu, H., Sun, H. & Cheng S. (2022b). Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite, Separation and Purification Technology, 288, 120564, DOI: 10.1016/j.seppur.2022.120564
  • 143. Shi, X., Zhang, X., Gao, W., Zhang, Y. & He, D. (2022a). Removal of microplastics from water by magnetic nano-Fe3O4, Science of The Total Environment, 802, 149838. DOI: 10.1016/j.scitotenv.2021.149838.
  • 144. Shirasaki, N., Matsushita, T., Matsui, Y. & Marubayashi, T. (2016). Effect of aluminum hydrolyte species on human enterovirus removal from water during the coagulation process. Chem. Eng. J., 284, pp. 786–793. DOI: 10.1016/j.cej.2015.09.045
  • 145. Siipola, V., Pflugmacher, S., Romar, H., Wendling, L. & Koukkari, P. (2020). Low-Cost Biochar Adsorbents for Water Purification Including Microplastics Removal, Appl. Sci., 10, 788. DOI: 10.3390/app10030788
  • 146. Simon, M., Vianello, A. & Vollertsen, J. (2019). Removal of >10 μm microplastic particles from treated wastewater by a disc filter, Water, 11(9), 1935. DOI:10.3390/w11091935
  • 147. Singla, M., Díaz, J., Broto-Puig, F. & Borros, S. (2020). Sorption and release process of polybrominated diphenyl ethers (PDBEs) from different composition microplastics in aqueous medium: Solubility parameter approach, Environ. Pollut., 262, 114377. DOI: 10.1016/j.envpol.2020.114377
  • 148. Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N. & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants, Polymer Degradation & Stability, 149, pp. 52–68. DOI: 10.1016/J.POLYMDEGRADSTAB.2018.01.018
  • 149. Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C. & Gieré R. (2018). Tire abrasion as a major source of microplastics in the environment, Aerosol Air Qual. Res., 18, pp. 2014–2028. DOI: 10.4209/aaqr.2018.03.0099
  • 150. Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A.M. (2020). Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions, Environ. Pollut., 258, 113844. DOI: 10.1016/j. envpol.2019.113844
  • 151. Sudhakar, M., Doble, M., Murthy, P.S. & Venkatesan, R. (2008). Marine microbe-mediated biodegradation of low-and high-density polyethylenes, International Biodeterioration & Biodegradation, 61(3), pp. 203–213. DOI: 10.1016/J.IBIOD.2007.07.011
  • 152. Sun, J., Dai, X.H., Wang, Q.L., van Loosdrecht, M.C.M. & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Research, 152, pp. 21–37. DOI: 10.1016/j.watres.2018.12.050
  • 153. Tagg, A., Harrison, J.P., Ju-Nam, Y., Sapp, M., Bradley, E.L., Sinclair, C.J. & Ojeda, J.J. (2017). Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater, Chem. Commun., 53, pp. 372–375. DOI: 10.1039/C6CC08798A
  • 154. Talvitie, J., Heinonen, M., Paakkonen, J.-P., Vahtera, E., Mikola, A., Setala, O. & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea, Water Sci. Technol., 72(9), pp. 1495-1504. DOI: 10.2166/wst.2015.360
  • 155. Talvitie, J., Mikola, A., Koistinen, A. & Setälä, O. (2017b). Solutions to microplastic pollution: Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, 123, pp. 401–407. DOI:10.1016/j.watres.2017.07.005
  • 156. Talvitie, J., Mikola, A., Setala, O., Heinonen, M. & Koistinen, A. (2017a). How well is microlitter purified from wastewater? – a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant, Water Research, 109, pp. 164–172. DOI:10.1016/j.watres.2016.11.046
  • 157. Tang, W.C., Li, X., Liu, H.Y., Wu, S.H., Zhou, Q., Du, C., Teng, Q., Zhong, Y.Y. & Yang, C.P. (2020). Sequential vertical flow trickling filter and horizontal flow reactor for treatment of decentralized domestic wastewater with sodium dodecyl benzene sulfonate, Bioresour. Technol. 300, 122634. DOI: 10.1016/j.biortech.2019.122634
  • 158. Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y. & Xie, B. (2021). Removal of microplastics from aqueous solutions by magnetic carbon nanotubes, Chemical Engineering Journal, 406, 126804. DOI: 10.1016/j.cej.2020.126804
  • 159. Tian, L., Kolvenbach, B., Corvini, N., Wang, S., Tavanaie, N., Wang, L., Ma, Y., Scheu, S., Corvini, P.F.X. & Ji, R. (2017). Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment, New Biotechnology, 38(B), pp. 101-105. DOI: 10.1016/j.nbt.2016.07.008
  • 160. Tofa, T.S., Kunjali, K.L., Paul, S. & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods, Environ. Chem. Lett., 17, pp. 1341–1346. DOI: 10.1007/s10311-019-00859-z
  • 161. Thompson, R.C., Moore, C.J., Vom Saal, F.S. & Swan S.H. (2009). Plastics, the environment and human health: current consensus and future trends, Philosophical Transactions of the Royal Society B, 364, pp. 2153–2166. DOI: 10.1098/rstb.2009.0053
  • 162. Vimala, P. & Mathew, L. (2016). Biodegradation of polyethylene using Bacillus subtilis, Procedia Technology, 24, pp. 232–239. DOI: 10.1016/j.protcy.2016.05.031
  • 163. Vuori, L. & Ollikainen, M. (2022). How to remove microplastics in wastewater? A cost-effectiveness analysis, Ecological Economics 192 ,107246. DOI: 10.1016/j.ecolecon.2021.107246
  • 164. Wagner, M., Scherer, C., Alvarez‐Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T. Ridriguez‐Mozaz, S., Urbatzka, R., Dick Vethaak, A., Winther‐Nielsen M. & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know, Environ.Sci. Europe, 26, 12. DOI: 10.1186/s12302-014-0012-7
  • 165. Wang, S.M., Chen, H.Z., Zhou, X.W., Tian, Y.Q., Lin, C., Wang, W.L., Zhou, K.W., Zhang, Y.B. & Lin, H. (2020a). Microplastic abundance, distribution and composition in the mid-west Pacific Ocean, Environ. Pollut., 264, 114125 DOI: 10.1016/j. envpol.2020.114125.
  • 166. Wang, R., Ji, M., Zhai, H. & Liu, Y. (2020b).Occurrence of phthalate esters and microplastics in urban secondary effluents, receiving water bodies and reclaimed water treatment processes, Science of The Total Environment, 737, 140219. DOI: 10.1016/j.scitotenv.2020.140219
  • 167. Wang, Z., Sedighi, M. & Lea-Langton, A. (2020c). Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms, Water Research, 184, 116165. DOI: 10.1016/j.watres.2020.116165
  • 168. Wang, Q., Hernández-Crespo, C., Santoni, M., Van Hulle, S., Rousseau, D.P. (2020d). Horizontal subsurface flow constructed wetlands as tertiary treatment: Can they be an efficient barrier for microplastics pollution? Sci. Total Environ., 137785. DOI: 10.1016/j.scitotenv.2020.1377
  • 169. Wang, H., Zhang, Y. & Wang, C. (2019a). Surface modification and selective flotation of waste plastics for effective recycling-a review, Sep. Purif. Technol., 226, pp. 75–94. DOI: 10.1016/j.seppur.2019.05.052
  • 170. Wang, L., Kaeppler, A., Fischer, D. & Simmchen, J. (2019b). Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter, ACS Appl. Mater. Interfaces., 11, pp. 32937–32944. DOI: 10.1021/acsami.9b06128
  • 171. Wang, W. & Wang, J. (2018). Investigation of microplastics in aquatic environments: an overview of the methods used, from field sampling to laboratory analysis. Trends Anal. Chem., 108, pp. 195–202. DOI: 10.1016/j.trac.2018.08.026
  • 172. Wang, W., Ndungu, A.W., Li, Z. & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China, Sci.Total Environ., 575:1369–1374. DOI: 10.1016/j.scito tenv.2016.09.213
  • 173. Wei, R. & Zimmermann, W. (2017). Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate, Microbial Biotechnology, 10(6), pp. 1302–1307. DOI: 10.1111/1751-7915.12714
  • 174. Wiśniowska, E., Moraczewska-Majkut, K. & Nocoń, W. (2020). Selected unit processes in microplastics removal from water and wastewater, Desal. Water Treat., 199, pp. 512-520. DOI: 10.5004/dwt.2020.26513
  • 175. Xia, Y., Xiang, X.M., Dong, K.Y., Gong, Y.Y. & Li, Z.J. (2020). Surfactant stealth effect of microplastics in traditional coagulation process observed via 3-D fluorescence imaging, Science of The Total Environment, 729, 138783. DOI: 10.1016/j.scitotenv.2020.138783
  • 176. Xiao, K., Lianga, S., Wanga, X., Chena, C. & Huanga, X. (2019). Current state and challenges of full-scale membrane bioreactor applications: A critical review, Bioresour. Technol., 271, pp. 473–481. DOI: 10.1016/j.biortech.2018.09.061
  • 177. Xu, Z., Bai, X. & Ye, Z. (2021). Removal and generation of microplastics in wastewater treatment plants: A review, Journal of Cleaner Production, 291, 125982. DOI: 10.1016/j.jclepro.2021.125982
  • 178. Yang, L., Li, K., Cui, S., Kang, Y., An, L. & Lei, K. (2019). Removal of microplastics in municipal sewage from China's largest water reclamation plant, Water Research, 155, pp. 175–181. DOI: 10.1016/j.watres.2019.02.046
  • 179. Yang,Y., Yang, J., Wu, W.M., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plasticeating mealworms: Part 2. Role of gut microorganisms, Environmental Science & Technology, 49(20), pp. 12087–12093. DOI: 10.1021/acs.est.5b02663
  • 180. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades an assimilates poly (ethylene terephthalate). Science, 351, pp. 1196–1199. DOI: 10.1126/science.aad6359
  • 181. Zettler, E.R., Mincer, T.J. & Amaral-Zettler, L.A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris, Environ. Sci. Technol., 47, pp. 7137-7146. DOI: 10.1021/es401288x
  • 182. Zhang, K., Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C. & Lam, P.K. (2018). Microplastic pollution in China's inland water systems: a review of findings, methods, characteristics, effects, and management, Sci. Total Environ., 630, pp. 1641–1653. DOI: 10.1016/j.scitotenv.2018.02.300
  • 183. Zhang, X., Chen, J. & Li, J. (2020a). The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to contaminants association, Chemosphere. 251, 126360. DOI: 10.1016/j.chemosphere.2020.126360
  • 184. Zhang, Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K. & Baker, T. (2020b). Removal efficiency of micro-and nanoplastics (180 nm–125 μm) during drinking water treatment, Sci. Total Environ., 720, 137383. DOI: 10.1016/j.scitotenv.2020.137383
  • 185. Zhou, G., Wang, Q., Li, J., Li, Q., Xu, H., Ye, Q., Wang, Y., Shu, S. & Zhang, J. (2021). Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism, Science of the Total Environment, 752, 141837. DOI: 10.1016/j.scitotenv.2020.141837
  • 186. Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L. & Leusch, F.D. (2020). Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment, Sci. Total Environ., 713, 136356. DOI: 10.1016/j.scitotenv.2019.136356
  • 187. Ziajahromi, S., Neale, P.A., Rintoul, L. & Leusch, F.D.L. (2017). Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics, Water Research, 112, pp. 93-99. DOI: 10.1016/j.watres.2017.01.042
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19cb8100-29db-432d-8ccd-90d2233ddb25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.