Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Graphical tools have been proposed to facilitate the selection, evaluation, and correction of anticollision actions in situations with moving and stationary obstacles, assuming that such situations are not extreme or ordinary with sailing vessels and that the target movement parameters are constant or their upcoming change is known. The choice of evasive combined Z‐manoeuvre (both course and speed change at one point and return to the original values of these parameters at another point) and one combined action (both course and speed alteration at the selected point) were considered. The graphical tools developed contain diagrams, showing eight zones of actions, and special marks of targets at the moment of their closest approach to the own ship. In view of the COLREG and good seamanship, these zones were arranged in order of application priority. The results of the enumeration of a representative discrete set of possible manoeuvre variants were used to construct the diagrams.
Rocznik
Tom
Strony
625--633
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- National University “Odessa Maritime Academy”, Odessa, Ukraine
autor
- BSM Crew Service Centre, Odessa, Ukraine
Bibliografia
- [1] Eriksen B. O. H., Breivik M., Pettersen K. Y., Wiig M. S.(2016). A modified dynamic window algorithm for horizontal collision avoidance for auvs. In 2016 IEEE Conference on Control Applications (CCA). 499–506.
- [2] Fiorini P., Shiller Z. (1998). Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research, 17(7). 760–772.
- [3] Fışkın R., Kisi H., Nasibov E. (2018). A research on techniques, models and methods proposed for ship collisions avoidance path planning problem. The International Journal of Maritime Engineering. 160(A2). 187‐206.
- [4] Hannaford E., Maes P., Van Hassel E. (2022). Autonomous ships and the collision avoidance regulations: a licensed deck officer. WMU Journal of Maritime Affairs. 2. 233–266.
- [5] Huang,D., Liu Z., Wang X., (2020). Artificial Potential Field and Ship Maneuverability based Collision Avoidance Path Planning, Chinese Automation Congress (CAC), P. 2490‐2495.
- [6] Huang Y., Chen L., Chen P., Negenborn R.R., van Gelder P.H.A.J.M. (2020). Ship collision avoidance methods: State‐of‐the‐art. Safety Science. 121. 451–473.
- [7] Johansen T., Perez T., Cristofaro A. (2016). Ship Collision Avoidance and COLREGS Compliance Using Simulation‐Based Control Behavior Selection with Predictive Hazard Assessment. IEEE Transactions on Intelligent Transportation Systems, 17(12). 3407–3422.
- [8] Kuwata Y., Wolf, M. T., Zarzhitsky, D., Huntsberger, T. L. (2014). Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE Journal of= Oceanic Engineering, 39 (1), 110–119.
- [9] Pedersen E., Inoue K., Tsugane M. (2003). Simulator studies on a collision avoidance display that facilitates efficient and precise assessment of evasive manoeuvres in congested waterways. /The Journal of Navigation. 56. 411 ‐ 427.
- [10] Pietrzykowski Z., Borkowski P., Wołejsza P. (2012). NAVDEC – navigational decision support system on a sea‐going vessel. Maritime University of Szczecin, Scientific Journals. 30(102). 102–108.
- [11] Przywarty M., Boć R., Brcko T., Perković M. (2021). Factors Influencing the Action Point of the Collision Avoidance Manoeuvre. Appl. Sci., 11, 7299. 1‐9.
- [12] Neumann T.(2022) The Single‐board Computer As a Tool to Measure the Weather Parameters in the Marine Areas. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 14(4), doi:10.12716/1001.14.04.14. 901‐906
- [13] Tam, C., Bucknall, R., Greig, A., (2009). Review of collision avoidance and path planning methods for ships in close range encounters. The Journal of Navigation, 62 (3): 455‐476.
- [14] Vagushchenko A.A., Vagushchenko L.L. (2020). Numarical method for the selection of maneuvers to avoid collision with several vessels. /Science and Education a New Dimension. Natural and Technical Sciences, VIII(27), Issue: 224, 74‐80.
- [15] Vujičić S., Mohović Đ., Mohović R. (2017). A Model of Determining the Closest Point of Approach Between Ships on the Open Sea. Traffic & Transportation, Vol. 29, No. 2, 225‐232.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19ca8108-37af-4627-9fa4-ad991c139568