PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimization of Microwave-Assisted ZSM-5 (10) Catalytic Cracking to Maximizing Conversion and Energy Efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential application of microwave technology and interaction with oil/catalysts for heavy naphtha cracking to light products (aromatics and olefines) was explored. The reactor is a QVF tube of 240 mm long and 12.7 mm inner diameter, with 80 mm effective zone and the upper and lower zones filled with inert ceramic particles. The process used heater for heating heavy naphtha and condenser for the gas products. The feed enters the reactor after heating and the reaction occur within the catalytic zone while the ceramic particles improve the distribution of the compounds of the feed and products. All the products condensed and analysed by gas chromatography. Microwave technique used in chemical reactions in order to save energy and increase the conversion with lower temperature due to hot spots created within the catalyst. ZSM-5 (10) catalysts cracking experiments performed with and without nitrogen injection. The nitrogen injection increased the conversion in all conditions. The experiments achieved with various microwave irradiation (750–1250) W, preheating temperatures (150–250 °C) and space velocities (2 and 6 l/hr). The best result of cracking reaction conversion is (77.56%) at microwave power of (1250 W), a flowrate of (2 l/hr) and preheating temperature (200 °C). The cracking is facilitated due to re-activation effect of nitrogen on acid sites of the catalyst. The time of experiment is 12 minutes. Almost the flowrate has negative effect on the conversion. Microwave power increase reaction rate and increased the reaction conversion compared with conventional techniques. This study covered the effect of microwave with catalyst on the residence time, energy saving and conversion at lower temperature.
Twórcy
  • Department of Chemical Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, University of Babylon, Babylon, Iraq
  • Department of Chemical Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Mohammed, A.H.A.K., Karim, S., Rahman, A.M. 2010. Characterization and cracking activity of zeolite prepared from local Kaolin. Iraqi Journal of Chemical and Petroleum Engineering, 11(2), 35–42. https://doi.org/10.31699/ijcpe.2010.2.4
  • 2. Abd, M., Al-yaqoobi, A. 2023. The feasibility of utilizing microwave-assisted pyrolysis for Albizia branches biomass conversion into biofuel productions. International Journal of Renewable Energy Development, 12. https://doi.org/10.14710/ijred.2023.56907
  • 3. Abd, M.F., Al-yaqoobi, A.M., Abdul-Majeed, W.S. 2024. Catalytic microwave pyrolysis of Albizia Branches using iraqi bentonite clays. Iraqi Journal of Chemical and Petroleum Engineering, 25(2), 175–186. https://doi.org/10.31699/ijcpe.2024.2.16
  • 4. Abdullah, N.M., Hussien, H.Q., Jalil, R.R. 2024. Heavy naphtha desulfurization by ozone generated via the DBD plasma reactor. Iraqi Journal of Chemical and Petroleum Engineering, 25(2), 131–137. https://doi.org/10.31699/ijcpe.2024.2.12
  • 5. Ahmedzeki, N.S., Alhassani, M.H., Al-Mayah, A.M.R., Rashid, H.A. 2016. The use of locally prepared Zeolite (Y) for the removal of hydrogen sulfide from Iraqi natural gas. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(6), 1526–1535.
  • 6. Antos, G.J., Aitani, A.M. 2014. Catalytic Naphtha Reforming, 1.
  • 7. Corma, A., Mengual, J., Miguel, P.J. 2012. Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: Micro and macroscopic implications of the presence of steam. Applied Catalysis A: General, 417–418, 220–235. https://doi.org/10.1016/j.apcata.2011.12.044
  • 8. Da Silva, V.H., Reboucas, M.V., Salles, A.R., Pimentel, M.F., Pontes, M.J.C., Pasquini, C. 2015. Determination of naphtha composition by near infrared spectroscopy and multivariate regression to control steam cracker processes. Fuel Processing Technology, 131, 230–237. https://doi.org/10.1016/j.fuproc.2014.10.035
  • 9. Dehertog, W.J.H., Fromen, G.F. 1999. A catalytic route for aromatics production from LPG. Applied Catalysis A: General, 189(1), 63–75. https://doi.org/ https://doi.org/10.1016/S0926-860X(99)00252-5
  • 10. Eleiwi, F., Laleg-Kirati, T.M. 2014. Dynamic modeling and optimization in membrane distillation system. IFAC Proceedings Volumes, 47(3), 3327–3332. https://doi.org/https://doi.org/10.3182/20140824-6-ZA-1003.02475
  • 11. García, A., López, C.M., García, L.V., Casanova, J., Goldwasser, M.R. 2016. Improvements in the synthesis of zeolites with low Si / Al ratio from Venezuelan sodium silicate for an environmentally friendly process Mejoras en la síntesis de zeolitas con baja relación Si / Al. Ingeniería e Investigación, 36(1), 62–69.
  • 12. Hammadi, A.N., Shakir, I.K. 2020. Enhancement the octane number of light naphtha by adsorption process. AIP Conference Proceedings, 2213(March). https://doi.org/10.1063/5.0000129
  • 13. Jiang, J., Feng, X., Yang, M., Wang, Y. 2020. Comparative technoeconomic analysis and life cycle assessment of aromatics production from methanol and naphtha. Journal of Cleaner Production, 277, 123525. https://doi.org/10.1016/j.jclepro.2020.123525
  • 14. Khoshbin, R., Karimzadeh, R. 2017. Synthesis of mesoporous ZSM-5 from rice husk ash with ultrasound assisted alkali-treatment method used in catalytic cracking of light naphtha. Advanced Powder Technology, 28. https://doi.org/10.1016/j.apt.2017.04.024
  • 15. Majeed, N.S., Majeed, J.T. 2017. Study the performance of nanozeolite NaA on CO2 gas uptake. Iraqi Journal of Chemical and Petroleum Engineering, 18(2), 57–67. https://doi.org/10.31699/ijcpe.2017.2.5
  • 16. Mohammed, S.A.M., Mohammed, M.S. 2013. The application of microwave technology in demulsification of water-in-oil emulsion for missan oil fields. Iraqi Journal of Chemical and Petroleum Engineering, 14(2), 21–27. www.iasj.net
  • 17. Mora, M., del Carmen García, M., Jiménez-Sanchidrián, C., Romero-Salguero, F.J. 2010. Transformation of light paraffins in a microwave-induced plasma-based reactor at reduced pressure. International Journal of Hydrogen Energy, 35(9), 4111–4122. https://doi.org/10.1016/j.ijhydene.2010.01.149
  • 18. Rahimpour, M.R., Jafari, M., Iranshahi, D. 2013. Progress in catalytic naphtha reforming process: A review. Applied Energy, 109, 79–93. https://doi.org/10.1016/j.apenergy.2013.03.080
  • 19. Rane, N., Kersbulck, M., van Santen, R.A., Hensen, E.J.M. 2008. Cracking of n-heptane over Brønsted acid sites and Lewis acid Ga sites in ZSM-5 zeolite. Microporous and Mesoporous Materials, 110(2), 279–291. https://doi.org/10.1016/j.micromeso.2007.06.014
  • 20. Senise, J.T., Jermolovicius, L.A., De Castro, E.R., Do Nascimento, R.B., Cinquini, M.M. 2011. Equipment for microwave assisted thermal cracking of hydrocarbons. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, 758–761. https://doi.org/10.1109/IMOC.2011.6169235
  • 21. Theyab, M.A., Al-Hilali, B.M.I., Fadhil, D.T., Dahham, O.S. 2022. Zeolite effective use in treatment of physical and chemical properties of sewage water discharged from general samarra hospital. AIP Conference Proceedings, 2660(November). https://doi.org/10.1063/5.0108004
  • 22. Yudhanto, F., Jamasri, Rochardjo, H.S.B. 2018. Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber. IOP Conference Series: Materials Science and Engineering, 352(1). https://doi.org/10.1088/1757-899X/352/1/012002
  • 23. Zisopol, D.G., Portoaca, A.I., Nae, I., Ramadan, I. 2022. A statistical approach of the flexural strength of PLA and ABS 3D printed parts. Engineering, Technology and Applied Science Research, 12(2), 8248–8252. https://doi.org/10.48084/etasr.4739
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19ca77bb-0cf3-4e69-82ee-36d19fc46f91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.