PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Azo Dye Acid Red 27 from Aqueous Solutions Using Classical and Modified Fenton Reagent with Zero-Valent Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Usuwanie barwnika azowego czerwień kwasowa 27 z roztworów wodnych przy zastosowaniu odczynnika Fentona modyfikowanego żelazem zero wartościowym
Języki publikacji
EN
Abstrakty
EN
The article compares the classic Fenton reagent (Fe2+/H2O2) with its modification with zero-valent iron (ZVI/ H2O2) to remove azo dye Acid Red 27 from aqueous solutions at a concentration of 100 mg/L. For both methods, the most favorable parameter values were determined at which visual discoloration of the solutions tested was obtained (for Fe2+/ H2O2:pH 3.5, H2O2=60 mg/L, Fe2+/ H2O2=0.3, t=15 min, and for ZVI/ H2O2pH = 3, H2O2=40 mg/L, ZVI=80 mg/L, t=15 min). Under these conditions, the COD value was reduced by 71.5% and 69.2% for the classic Fenton and its modification, respectively. A reduction in toxicity was also obtained for Vibrio fischeri bacteria to below 25% by using the Microtox test. ZVI digestion at acidic pH for 10 minutes allowed to shorten the reaction time by about four times - from 15 to 4 minutes. BET analysis showed that the specific surface area increases with the digestion time, which significantly accelerates the reaction. The visual discoloration of aqueous solutions was obtained, and the final COD values were very small, ranging from 49-53 mg O2/L. According to the Aliivibrio fischeri toxicity classification test for water samples, all solutions of dyes tested can be considered as non-toxic (toxicity value <25%). In the study presented, results of decreasing the COD value and concentration of the dye in the ZVI/ H2O2 method obtained are slightly worse compared to the Fe2+/ H2O2method. However, taking the decolorisation time as a criterion, a four times faster decolorisation time was obtained in the ZVI/ H2O2 method, compared to the Fe2+/ H2O2 method.
PL
W artykule porównano klasyczny odczynnik Fentona (Fe2+/H2O2) z jego modyfikacją żelazem o zerowej wartościowości (ZVI/ H2O2), w celu usunięcia barwnika azowego czerwień kwasowa 27 z wodnych roztworów, o stężeniu 100 mg/L. Dla obu metod wyznaczono najkorzystniejsze wartości parametrów, przy których uzyskano wizualne odbarwienie badanych roztworów (dla (Fe2+/H2O2): pH 3,5, H2O2=60 mg/L, Fe2+/ H2O2=0,3, t=15 min. i dla ZVI/H2O2: pH 3, H2O2=40 mg/L, ZVI=80 mg/L, t=15 min. W tych warunkach wartość ChZT spadła o 71,5% i 69,2% dla klasycznego Fentona i jego modyfikacji. Zmniejszenie toksyczności uzyskano również dla bakterii Aliivibrio fischeri (poniżej 25%) przy zastosowaniu testu Microtox. Trawienie ZVI w kwasowym pH przez 10 minut pozwoliło skrócić czas reakcji około cztery razy z 15 do 4 minut. Analiza BET wykazała, że powierzchnia właściwa wzrasta wraz z czasem trawienia, co znacznie przyspiesza reakcję. Uzyskano wizualne odbarwienie roztworów wodnych, a końcowe wartości ChZT były bardzo małe i mieściły się w zakresie 49-53 mg O2/L. Zgodnie z testem klasyfikacji toksyczności wobec Vibrio fischeri dla próbek wodnych, wszystkie testowane roztwory barwników można uznać za nietoksyczne (wartość toksyczności <25%).
Rocznik
Strony
100--106
Opis fizyczny
Bibliogr. 30., rys., tab.
Twórcy
autor
  • Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • Chemiqua Company, ul. Skawińska 25/1, 31-066 Kraków, Poland
  • Silesian University of Technology, Institute of Water and Wastewater Engineering, ul. Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • State Higher Vocational School in Tarnów, Institute of Mathematical and Natural Sciences, ul. Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
  • 1. Jin XC, Liu GQ, Xu ZH, Tao WY. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Applied Microbiology and Biotechnology 2007; 74(1): 239-243.
  • 2. Okoniewska E. Usuwanie barwnika pąsu kwasowego 4R z roztworów wodnych na węglach aktywnych. Inżynieria i Ochrona Środowiska 2016; 19(3): 331-340.
  • 3. Barbusiński K, Pieczykolan B. Wstępne badania degradacji barwnika Acid Green 16 w systemie H2O2/wiórki stalowe. Inżynieria i Ochrona Środowiska 2009; 12(1): 35-49.
  • 4. San Sebastian Martinez N, Figuls Fernández J, Font Segura X, Sanchez Ferrer A. PreOxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. Journal of Hazardous Materials 2003; B101(3): 315-322.
  • 5. Barbusinski K, Fajkis S. Optimization of the Fenton oxidation of wastewater generated by rape oil soapstock splitting. Environmental Progress & Sustainable Energy 2011; 30(4): 620-631.
  • 6. Wąsowski J, Piotrowska A. Rozkład organicznych zanieczyszczeń wody w procesach pogłębionego utleniania. Ochrona Środowiska 2002; 2(85): 27-32.
  • 7. Pratiwi MI, Afifah N, Saleh R. Decoloration of organic dyes using zeolites supported Fedoped ZnO under UV light irradiation. AIP Conference Proceedings 2017; 1862: 1-4.
  • 8. Fang ZD, Zhang K, Liu J, Fan JY, Zhao ZW. Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2 nanocomposites as catalysts. Water Science and Engineering 2017; 10(4): 326-333.
  • 9. Barbusiński K. The modified Fenton process for decolorization of dye wastewater. Polish Journal of Environmental Studies 2005; 14(3): 281-285.
  • 10. Lin YT, Weng CH, Chen FY. Effective removal of AB24 dye by nano/micro-size zerovalent iron. Separation and Purification Technology 2008; 64(1): 26-30.
  • 11. Shu HY, Chang MC, Chen CC, Chen PE. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. Journal of Hazardous Materials 2010; 184(1-3): 499-505.
  • 12. Fu F, Wang Q, Tang B. Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials 2010; 174(1-3): 177-22.
  • 13. He Y, Gao JF, Feng FQ, Liu C, Peng YZ, Wang SY. The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chemical Engineering Journal 2012; 179(1): 8-18.
  • 14. Weng CH, Lin YT, Yuan HM. Rapid decoloration of Reactive Black 5 by an advanced Fenton process in conjunction with ultrasound. Separation and Purification Technology 2013; 117: 75-82.
  • 15. Li H, Wan J, Ma Y, Wang Y, Huang M. Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7. Chemical Engineering Journal 2014; 237(2): 487-496.
  • 16. PN-EN ISO 10523:2012. Water Quality. Determination of pH.
  • 17. PN-ISO 15705:2005. Water Quality. Determination of the Chemical Oxygen Demand Index. Small-scale. Sealed-tube Method.
  • 18. BN-89/6191-04. Chemical reagents. Hydrogen peroxide about 30% (m/m), solution.
  • 19. Płonka I, Pieczykolan B, Barbusiński K, Kalka J, Thomas M, Piskorz PJ. Investigation of the efficiency of the UV/H2O2 process on the removal of dye Acid Green 16 from aqueous solutions: process optimization and toxicity assessment. FIBRES & TEXTILES in Eastern Europe 2017; 25, 6(126): 103-107. DOI: 10.5604/01.3001.0010.5379.
  • 20. PN-EN ISO 11348-3:2008. Water quality. Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 3: Method using freeze-dried bacteria.
  • 21. Thommes M, Kaneko K, Neimark AV, Olivie JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surrface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015; 87(9-10): 1051-1069.
  • 22. Bohdziewicz J, Dudziak M, Kamińska G, Kudlek E. Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment - analytical problems. Desalination and Water Treatment 2016; 57(3): 1361-1369.
  • 23. Lucas MS, Peres JA. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments 2006; 71(3): 236-244.
  • 24. Fernandes NC, Brito LB, Costa GG, Taveira SF, Cunha-Filho MSS, Oliveira GAR, Marreto RN. Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box-Behnken design and ecotoxicity tests. Chemico-Biological Interactions 2018; 291: 47-54.
  • 25. Ertugay N, Nuran Acar F. Sonocatalytic degradation of Direct Blue 71 azo dye at the presence zero valent iron (ZVI). Desalination and Water Treatment 2013; 51(40-42): 7570-7576.
  • 26. Malakootian M, Mansoorian HJ, Hossein A, Khanjani N. Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Safety and Environmental Protection 2015; 9(6): 125-137.
  • 27. Fard RF, Sar MEK, Fahiminia M, Mirzaei N, Yousefi N, Mansoorian HJ, Khanjani N, Razaei S, Ghadiri SK. Efficiency of multi walled carbon nanotubes for removing Direct Blue 71 from aqueous solutions. Eurasian Journal of Analytical Chemistry 2018; 13(3):em13.
  • 28. Mansoorian HJ, Bazrafshan E, Yari A, Alizadeh M. Removal of azo dyes from aqueous solution using Fenton and modified Fenton processes. Health Scope 2014; 3(2): e15507.
  • 29. Barbusiński K, Majewski J. Discoloration of azo dye Acid Red 18 by Fenton reagent in the presence of iron powder. Polish Journal of Environmental Studies 2003; 12(2): 151- 155.
  • 30. Li S, Ding Y, Wang W, Lei H. A facile method for determining the Fe(0) content and reactivity of zero valent iron. Analytical Methods 2016; 8(6): 1239-1248.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19c7c191-9640-4c11-b77f-00a185674df6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.