PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermo-diffusion of a thick circular plate via modified Green–Naghdi models

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the thermo-diffusion of an isotropic thick circular plate. The Green and Naghdi’s models including the energy dissipation are anticipated in their simple forms. Novel multi single/dual-phase-lag models with higher-order timederivatives are also provided to examine the thermo-diffusion response of the circular plate. The simple and refined forms of Green and Naghdi’s types II and III are investigated in this work. The closed-form solution of thermal diffusion governing equations is attained by taking into account the boundary conditions. A validation examples of outcomes are acceptable by comparing all quantities according to the discussing of all thermoelastic models. The refined forms of Green and Naghdi’s types II and III should be applied to get accurate outcomes.
Rocznik
Strony
235--256
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
Bibliografia
  • 1. M. Biot, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics, 27, 240–253, 1956.
  • 2. A.E. Green K.A. Lindsay, Thermoelasicity, Journal of Elasticity, 2, 1–7, 1972.
  • 3. A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of The Royal Society of London A, 432, 171–194, 1991.
  • 4. A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, 15, 253–264, 1992.
  • 5. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, 31, 189–208, 1993.
  • 6. S.K. Roy Choudhuri, On a thermoelastic three-phase-lag model, Journal of Thermal Stresses, 30, 231–238, 2007.
  • 7. R. Quintanilla, R. Racke, A note on stability in three-phase-lag heat conduction, International Journal of Heat and Mass Transfer, 51, 24–29, 2008.
  • 8. A. Kar, M. Kanoria, Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect, European Journal of Mechanics –A/Solids, 1, 1–11, 2009.
  • 9. S. Mukhopadhyay, R. Kumar, Effect of three phase lag on generalized thermoelasticity for an infinite medium with a cylindrical cavity, Journal of Thermal Stresses, 32, 1149– 1165, 2009.
  • 10. S. Mukhopadhyay, S. Kothari, R. Kumar, On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags, Acta Mechanica, 214, 305–314, 2010.
  • 11. R. Kumar, V. Chawla, A study of plane wave propagation in anisotropic three-phase-lagand two-phase-lag model, International Communications. Heat Mass Transfer, 38, 1262–1268, 2011.
  • 12. A. Miranville, R. Quintanilla, A phase-field model based on a three-phase-lag heat onduction, Applied Mathematics and Optimization, 63, 133–150, 2011.
  • 13. S. Banik, M. Kanoria, Effects of three-phase-lag on two-temperature generalized ther- moelasticity for infinite medium with spherical cavity, Applied Mathematics and Mechanics, English Edition, 33, 4, 483–498, 2012.
  • 14. P. Das, M. Kanoria, Magneto-thermo-elastic response in a perfectly conducting medium with three-phase-lag effect, Acta Mechanica, 223, 4, 811–828, 2012.
  • 15. A.S. El-Karamany, M.A. Ezzat, On the three-phase-lag linear micropolar thermoelas- ticity theory, European Journal of Mechanics – A/Solids, 40, 198–208, 2013.
  • 16. M.I.A. Othman, S.M. Said, 2D problem of magneto-thermoelasticity fiber-reinforced medium under temperature dependent properties with three-phase-lag model, Meccanica, 49, 5, 1225–1241, 2014.
  • 17. R. Kumar, M. Kaur S.C. Rajvanshi, Reflection and transmission between two microp- olar thermoelastic half-spaces with three-phase-lag model Journal of Engineering Physics and Thermophysics, 87, 2, 295–307, 2014.
  • 18. S.M. Said, Influence of gravity on generalized magneto-thermoelastic medium for threephase-lag model, Journal of Computational and Applied Mathematics, 291, 142–157, 2016.
  • 19. S. Biswas, B. Mukhopadhyay, S. Shaw, Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model, Journal of ElectromagneticWaves and Applications, 31, 9, 879–897, 2017.
  • 20. A.M. Zenkour, M.A. Kutbi, Multi thermal relaxations for thermodiffusion responses ina thermoelastic half-space, International Journal of Heat and Mass Transfer, 143, 118568, 2019.
  • 21. A.M. Zenkour, D.S. Mashat, A laser pulse impactful on a half-space using the modified TPL G–N models, Scientific Reports, 10, 4417, 1–12, 2020.
  • 22. M.I.A. Othman, I.A. Abbas, Thermal shock problem in a homogeneous isotropic hollowly linder with energy dissipation, Computational Mathematics and Modeling, 22, 3, 266–277, 2011.
  • 23. M.I.A. Othmann, S.Y. Atwa, Response of micropolar thermoelastic solid with voids due to various sources under Green Naghdi theory, Acta Mechanica Solida Sinica, 25, 2,197–209, 2012.
  • 24. M.I.A. Othman, S.Y. Atwa, Two-dimensional problem of a fibre-reinforced anisotropic thermoelastic medium. Comparison with the Green–Naghdi theory, Computational Mathematics and Modeling, 24, 2, 307–325, 2013.
  • 25. I.A. Abbas, A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole, Applied Mathematics Letters, 26, 232–239, 2013.
  • 26. I.A. Abbas, A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity, Applied Mathematics and Computation, 245, 108–115, 2014.
  • 27. A.S. El-Karamany, M.A. Ezzat, Two-temperature Green–Naghdi theory type III in linear thermoviscoelastic anisotropic solid, Applied Mathematical Modelling, 39, 2155– 2171, 2015.
  • 28. M.I.A. Othman, R.S. Tantawi, The effect of a laser pulse and gravity field on a ther- moelastic medium under Green–Naghdi theory, Acta Mechanica, 227, 3571–3583, 2016.
  • 29. A.S. El-Karamany, M.A. Ezzat, On the phase-lag Green–Naghdi thermoelasticity the-ories, Applied Mathematical Modelling, 40, 5643–5659, 2016.
  • 30. M.N. Allam, K.A. Elsibai, A.E. Abouelregal, Electromagneto-thermoelastic prob- lem in a thick plate using Green and Naghdi theory, International Journal of Engineering Science, 47, 5-6, 680–690, 2009.
  • 31. M.A. Ezzat, A.S. El-Karamany, A.A. Bary, State space approach to one-dimensional magneto-thermoelasticity under the Green–Naghdi theories, Canadian Journal of Physics,87, 867–878, 2009.
  • 32. Y Jiangong, X. Tonglong, Generalized thermoelastic waves in spherical curved plateswithout energy dissipation, Acta Mechanica, 212, 39–50, 2010.
  • 33. Y. Jiangong, Z. Xiaoming, X. Tonglong, Generalized thermoelastic waves in func- tionally graded plates without energy dissipation, Composite Structures, 93, 32–39, 2010.
  • 34. S.Y. Atwa, Generalized magneto-thermoelasticity with two temperature and initial stress under Green–Naghdi theory, AppliedMathematicalModelling, 38, 21-22, 5217–5230, 2014.
  • 35. A.M. Zenkour, Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis, Acta Mechanica, 229, 9, 3671–3692, 2018.
  • 36. A.M. Zenkour, Refined microtemperatures multi-phase-lags theory for plane wave prop-agation in thermoelastic medium, Results in Physics, 11, 929–937, 2018.
  • 37. A.M. Zenkour, Refined multi-phase-lags theory for photothermal waves of a gravitated semiconducting half-space, Composite Structures, 212, 346–364, 2019.
  • 38. A.M. Zenkour, Effect of thermal activation and diffusion on a photothermal semicon-ducting half-space, Journal of Physics and Chemistry of Solids, 132, 56–67, 2019.
  • 39. A.M. Zenkour, Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lagtheory, Journal of Thermal Stresses, 43, 6, 687–706, 2020.
  • 40. A.M. Zenkour, Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model, Journal of Physics and Chemistry of Solids, 137, 109213, 2020.
  • 41. D.S. Mashat, A.M. Zenkour, Modified DPL Green–Naghdi theory for thermoelastic vibration of temperature-dependent nanobeams, Results in Physics, 16, 102845, 2020.
  • 42. A.M. Zenkour, Exact coupled solution for photothermal semiconducting beams usinga refined multi-phase-lag theory, Optics & Laser Technology, 128, 106233, 2020.
  • 43. M.I.A. Othman, S.Y. Atwa, R.M. Farouk, The effect of diffusion on two-dimensionalproblem of generalized thermoelasticity with Green–Naghdi theory, International CommununicationsHeat Mass Transfer, 36, 857–864, 2009.
  • 44. B. Singh, Wave propagation in a Green–Naghdi thermoelastic solid with diffusion, International Journal of Thermophysics, 34, 553–566, 2013.
  • 45. S. Deswal, K.K. Kalkal, Electromagneto-thermodiffusive problem for short times with-out energy dissipation, Journal of Engineering Physics and Thermophysics, 86, 3, 705–715, 2013.
  • 46. S.M. Hosseini, J. Sladek, V. Sladek, Two dimensional transient analysis of coupled non-Fick diffusion–thermoelasticity based on Green–Naghdi theory using the meshless local Petrov–Galerkin (MLPG) method, International Journal of Mechanical Sciences, 82, 74–80, 2014.
  • 47. J.J. Tripathi, G.D. Kedar, K.C. Deshmukh, Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply, Acta Mechanica, 226, 2121–256 A. M. Zenkour
  • 48. B. Singh, L. Singh, S. Deswal, Reflection of plane waves in thermo-diffusion elasticity without dissipation under the effect of rotation, Mechanics of Advanced Materials and Structures, 23, 1, 74–79, 2016.
  • 49. Q. Xiong, X. Tian, Transient magneto-thermo-elasto-diffusive responses of rotating porous media without energy dissipation under thermal shock, Meccanica, 51, 2435–2447, 2016.
  • 50. M. Aouadi, F. Passarella, V. Tibullo, A bending theory of thermoelastic diffusion plates based on Green-Naghdi theory, European Journal of Mechanics – A/Solids, 65, 123–135, 2017.
  • 51. M. Aouadi, M. Ciarletta, G. Iovane, A porous thermoelastic diffusion theory of types II and III, Acta Mechanica, 228, 931–949, 2017.
  • 52. B. Lazzari, R. Nibbi, Energy decay in Green–Naghdi thermoelasticity with diffusion and dissipative boundary controls, Journal of Thermal Stresses, 40, 7, 917–927, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19c6d6fc-196b-4bec-9727-713e71cb3de9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.