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This article presents the thermo-diffusion of an isotropic thick circular plate.
The Green and Naghdi’s models including the energy dissipation are anticipated in
their simple forms. Novel multi single/dual-phase-lag models with higher-order time-
derivatives are also provided to examine the thermo-diffusion response of the circular
plate. The simple and refined forms of Green and Naghdi’s types II and III are
investigated in this work. The closed-form solution of thermal diffusion governing
equations is attained by taking into account the boundary conditions. A validation
examples of outcomes are acceptable by comparing all quantities according to the
discussing of all thermoelastic models. The refined forms of Green and Naghdi’s types
II and III should be applied to get accurate outcomes.
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Notation

a measure of the thermodiffusion effect,
αc linear diffusion expansion coefficient,
αt thermal expansion coefficient,
C concentration,
Cϑ specific heat at uniform strain,
D diffusion coefficient,
⇀

∇θ temperature gradient,
⇀

∇ϑ thermal displacement gradient,
e = uk,k cubical dilatation,
eij strain tensor components,
ξ wave number in the radial r-direction,
ϑ thermal displacement,
γ1 = (3λ+ 2µ)αt thermal modulus,
γ2 = (3λ+ 2µ)αc thermo-diffusion coupling component,
k heat conductivity coefficient,
k∗ positive constant (rate of thermal conductivity of an isotropic material),
λ, µ Lamé’s elastic parameters,
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∇2 Laplacian operator,
ω complex frequency,
P chemical potential,
~q heat flux vector,
rφz cylindrical polar co-ordinates,
ρ material density,
σij stress tensor components,
T thermodynamical temperature,
T0 environment temperature,
τq phase-lag of heat flux,
τθ phase-lag of temperature gradient,
τϑ phase-lag of thermal displacement gradient,
θ = T − T0 temperature change,
⇀

u ≡ (u, 0, w) displacement vector.

1. Introduction

All generalized thermoelasticity theories are investigated to improve
and treat the shortening in the classical one of Biot [1]. One of the most sig-
nificant generalized theory is that given by Green and Naghdi (G–N) [2–5]. It

includes both
⇀

∇θ and
⇀

∇ϑ among the constitutive quantities. Green and Naghdi
presented their heat conduction law in the context of

(1.1) ⇀
q (P, t)= −k

⇀

∇θ(P, t) − k∗
⇀

∇ϑ(P, t).

The thermal displacement ϑ is firstly proposed in G–N [5] by the relations

(1.2) ϑ=

t
∫

t0

θ(P, s) ds,
∂ϑ

∂t
= θ, ϑ(P, t0) = 0.

The three-phase-lag (TPL) to ⇀
q ,

⇀

∇θ and
⇀

∇ϑ are introduced to expand G–N
law. That is

(1.3) ⇀
q (P, t+ τq) = −k

⇀

∇θ(P, t+ τθ) − k∗
⇀

∇ϑ(P, t+ τϑ),

where 0 ≤ τϑ < τθ < τq. Then, Eq. (1.3) shows that both
⇀

∇θ and
⇀

∇ϑ known
along a material volume found a position P (

⇀
r ) at time t + τθ and t + τϑ bring

about heat flux ⇀
q to stream at additional instantaneous of time τq.

Taylor’s series expansion may be used of Eq. (1.3) up to high time-derivatives
in τq, τθ and τϑ to yield

(

1 +
M
∑

m=1

τmq
m!

∂m

∂tm

)

⇀
q = −k

(

1 +
N

∑

n=1

τnθ
n!

∂n

∂tn

)

⇀

∇θ(1.4)

− k∗
(

1 +
N

∑

n=1

τnϑ
n!

∂n

∂tn

)

⇀

∇ϑ,
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which fills in as an expansion to the generalized heat conduction formula that
neglecting the mechanical term.

To obtain a novel heat conduction equation based on G–N theory we begin
with the energy equation for an isotropic thermo-diffusive plate without any heat
source and it is stated in the form

(1.5) −
⇀

∇ · ⇀
q =

∂

∂t
(ρCϑθ + aT0C + γ1T0uk,k).

If we income the divergence followed by the first derivative with respect to t
of both sides of Eq. (1.4) and then using Eq. (1.5) we get

(1.6)

[

k

(

1 +
N

∑

n=1

τnθ
n!

∂n

∂tn

)

∂

∂t
+ k∗

(

1 +
N

∑

n=1

τnϑ
n!

∂n

∂tn

)]

∇2θ

=

(

1 +
M
∑

m=1

τmq
m!

∂m

∂tm

)

∂2

∂t2
(ρCϑθ + aT0C + γ1T0uk,k),

which denotes the modified coupled heat equation that comprises TPL im-
pacts for an isotropic plate. In the following we present some special cases from
Eq. (1.6).

The basic formula for the TPL heat conduction equation according to G–N
of type III is given by setting N = 1 and M = 2 in Eq. (1.6). That is

(1.7)

[

k

(

1 + τθ
∂

∂t

)

∂

∂t
+ k∗

(

1 + τϑ
∂

∂t

)]

∇2θ

=

(

1 + τq
∂

∂t
+

1

2
τ2
q

∂2

∂t2

)

∂2

∂t2
(ρCϑθ + aT0C + γ1T0uk,k),

which represents a target heat conduction equation for a lot of investigators
[6–21] and many of them may be omitting the term containing τ2

q .
Also, the “single-phase-lag” (SPL) model according to G–N of type III for an

isotropic body is given by putting M = 1 and τθ = τϑ = 0 in Eq. (1.6). That is

(1.8)

(

k
∂

∂t
+ k∗

)

∇2θ =

(

1 + τq
∂

∂t

)

∂2

∂t2
(ρCϑθ + aT0C + γ1T0uk,k).

Finally, the simple model according to G–N of type III [2–5] is given by
setting τq = τθ = τϑ = 0 in Eq. (1.6) in the form [22–29]

(1.9)

(

k
∂

∂t
+ k∗

)

∇2θ =
∂2

∂t2
(ρCϑθ + aT0C + γ1T0uk,k).
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Setting τθ = 0 in Eq. (1.7), we get the DPL heat conduction equation ac-
cording to G–N of type III as

(1.10)

[

k
∂

∂t
+ k∗

(

1 + τϑ
∂

∂t

)]

∇2θ

=

(

1 + τq
∂

∂t
+

1

2
τ2
q

∂2

∂t2

)

∂2

∂t2
(ρCϑθ + aT0C + γ1T0uk,k).

Though, if we set τ2
q → 0 and k = 0, then Eq. (1.10) inclines to

(1.11) k∗
(

1 + τϑ
∂

∂t

)

∇2θ =

(

1 + τq
∂

∂t

)

∂2

∂t2
(ρCϑθ + aT0C + γ1T0uk,k).

The above equation characterizes the DPL G–N type II heat conduction equation
[15]. Putting τϑ = τq = 0, Eq. (1.11) tends to [30–33]

(1.12) k∗∇2θ =
∂2

∂t2
(ρCϑθ + aT0C + γ1T0uk,k).

The above formula characterizes a simple heat conduction equation based upon
the G–N model of type II which includes k∗ instead of k. Equation (1.12) can be
expressed from Eq. (1.9) if we set k = 0. Also, putting k∗ = 0 in Eq. (1.9) tends
another simple heat equation according to G–N of type II that include k in the
form

(1.13) k∇2θ =
∂

∂t
(ρCϑθ + aT0C + γ1T0uk,k).

In what follows we summarize all models by setting a unified DPL Green–
Naghdi heat conduction equation (τθ → 0) in the form (Zenkour [35–42]):

(1.14) kL1
ϑ(∇2θ) = Lq(ρCϑθ + aT0C + γ1T0uk,k).

where

(1.15) L1
ϑ =

∂

∂t
+
ǫk∗

k

(

1 +
N

∑

n=1

τnϑ
n!

∂n

∂tn

)

, Lq =

(

1 +
M
∑

m=1

τmq
m!

∂m

∂tm

)

∂2

∂t2
.

Here ǫ is a dimensionless key integer, either equals zero or one according to
the case chosen. Eq. (1.14) is the most general one when M , N have various
positive integer values more than zero. Roughly different models are gained from
Eq. (1.14) in the following form:

• DPL G–N of type III: ǫ = 1, M = N ≥ 1.

• SPL G–N of type III: ǫ = 1, M = 1, τϑ = 0.
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• SPL G–N of type II: ǫ = 0, M = 1, τϑ = 0.

• Simple G–N of type III: ǫ = 1, τq = τϑ = 0.

• Simple G–N of type II: ǫ = 0, τq = τϑ = 0.

The present article is concerned with the study of diffusion phenomenon.
Othman et al. [43] discussed the impact of diffusion on 2D problem of gener-
alized thermoelasticity with G–N model. Singh [44] proposed the wave prop-
agation in a thermoelastic solid with diffusion via G–N theory. Deswal and
Kalkal [45] presented the electromagneto-thermodiffusive problem for short
times using G–N theory without energy dissipation. Hosseini et al. [46] pre-
sented a 2D transient analysis of coupled non-Fick diffusion-thermoelasticity
based on G–N theory using the meshless local Petrov–Galerkin method. Tri-

pathi et al. [47] discussed the generalized thermoelastic diffusion in thick plates
with axisymmetric heat supply. Singh et al. [48] presented the reflection of plane
waves in thermo-diffusion elasticity via G–N theory without dissipation taken
into account the rotation effect. Xiong and Tian [49] dealt with the response
of transient magneto-thermo-elasto-diffusive of rotating porous media without
energy dissipation under thermal shock. Aouadi et al. [50] studied the bending
theory of thermoelastic diffusion plates based on G–N theory. Aouadi et al. [51]
proposed a porous thermoelastic diffusion theory according to G–N theory of
types II and III. Lazzari and Nibbi [52] discussed the energy decay in G–N
thermoelasticity with diffusion and dissipative boundary controls.

A lot of cases based upon Green and Naghdi’s and the phase-lag theories are
adopted to deal with the basic equations of the thermoelastic diffusion circu-
lar plates. The exact solutions for different fields “like temperature, dilatation,
displacements, concentration, stresses, and chemical potential” are investigated.
The boundary conditions at the upper and lower surfaces of the circular plate
are taken into account. The validation and applications of the problem are dis-
cussed by comparing the modified models with the simple ones. At long last,
a general conversation about the picked up outcomes is accounted for together
with ends and future perspectives. Some classified outcomes are introduced to
help different agents in their applications.

2. Basic equations

Let us consider a thermo-diffusion behavior on a 2D half-space circular plate
using a combination of the multi-phase-lag and Green and Naghdi’s theories.
The normal z-axis is taken as the axis of symmetry and the origin of the system
of co-ordinates is at the mid-plane between surfaces of the plate. The problem
is outlined according to the cylindrical polar co-ordinates (r, ϕ, z). All functions
rely upon the time t and the radial and normal coordinates x and z. The last
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type of the heat conduction formula is introduced in Eq. (1.14). The plate is of
infnite extent in the radial direction and has finite thickness. The thickness of
the plate is 2h and it is occupying the region

(2.1) R = {(r, ϕ, z) : 0 ≤ r ≤ ∞, −h ≤ z ≤ h}.
The displacement vector ⇀

u ≡ (u, 0, w) for the 2D problem is considered. The
strain tensor components are given by

(2.2) err =
∂u

∂r
, eϕϕ =

u

r
, ezz =

∂w

∂z
, erz =

1

2

(

∂w

∂r
+
∂u

∂z

)

,

and e = uk,k is represented by

(2.3) e =
∂u

∂r
+
u

r
+
∂w

∂z
=

1

r

∂

∂r
(ru).

The dynamic equations without body forces are represented by

(2.4)
µ

(

∇2u− u

r2

)

+ (λ+ µ)
∂e

∂r
− γ1

∂θ

∂r
− γ2

∂C

∂r
= ρ

∂2u

∂t2
,

µ∇2w + (λ+ µ)
∂e

∂z
− γ1

∂θ

∂z
− γ2

∂C

∂z
= ρ

∂2w

∂t2
,

where

(2.5) ∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
.

The equation of mass diffusion can be expressed by

(2.6) L0
ϑ(C) = D∇2P, L0

ϑ =

(

1 +
N−1
∑

n=1

τnϑ
n!

∂n

∂tn

)

∂

∂t
.

According to the Duhamel-Neumann formulae, the stress-strain-temperature-
diffusion relations for the present medium with dismissing the body forces can
be communicated in the form

σrr = 2µ
∂u

∂r
+ λe− γ1θ − γ2C,

σϕϕ = 2µ
u

r
+ λe− γ1θ − γ2C,

σzz = 2µ
∂w

∂z
+ λe− γ1θ − γ2C,

σzr = µ

(

∂w

∂r
+
∂u

∂z

)

, σrϕ = σϕz = 0,

(2.7)

P = bC − γ2e− aθ.(2.8)

Using Eq. (2.8) into Eq. (2.6), we get the diffusion equation as

(2.9) L0
ϑ(C) −D∇2(bC − βe− aθ) = 0.
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3. Formulation of the problem

It is reasonable to introduce the accompanying dimensionless variables in the
following parts:

(3.1)

{r′, z′, u′, w′} = c0η{r, z, u, w}, {t′, τ ′ϑ, τ ′q} = ηc20{t, τϑ, τq},

(k∗)′ =
k∗

kηc20
, θ′ =

β1θ

ρc20
, σ′ij =

σij
ρc20

,

C ′ =
β2C

ρc20
, P ′ =

P

β2
, c20 =

λ+ 2µ

ρ
, η =

ρCϑ
k
.

According to the above dimensionless factors, one can get the following system
of equations (dropping the dashed for comfort):

σrr =
∂u

∂r
+ c1

(

u

r
+
∂w

∂z

)

− θ − C,(3.2)

σϕϕ =
u

r
+ c1

(

∂u

∂r
+
∂w

∂z

)

− θ − C,(3.3)

σzz =
∂w

∂z
+ c1

(

∂u

∂r
+
∂w

∂z

)

− θ − C,(3.4)

σzr = c2

(

∂w

∂r
+
∂u

∂z

)

,(3.5)

P = c3C − e− c4θ,(3.6)

∇2u− u

r2
+ c5

∂e

∂r
− c6

(

∂θ

∂r
+
∂C

∂r
+
∂2u

∂t2

)

= 0,(3.7)

∇2w + c5
∂e

∂z
− c6

(

∂θ

∂z
+
∂C

∂z
+
∂2w

∂t2

)

= 0,(3.8)

L1
ϑ(∇2θ) = Lq(θ + c7C + c8e),(3.9)

c9L0
ϑ(C) −∇2(c3C − e− c4θ) = 0,(3.10)

where

(3.11)

c1 =
λ

λ+ 2µ
, c2 =

µ

λ+ 2µ
, c3 =

b(λ+ 2µ)

γ2
2

, c4 =
a(λ+ 2µ)

γ1γ2
,

c5 =
1

c2
, c6 = c5 + 1, c7 =

aT0γ1

ρCϑγ2
, c8 =

γ2
1T0

ρ(λ+ 2µ)Cϑ
,

c9 =
(λ+ 2µ)k

Dγ2
2ρCϑ

, L1
ϑ =

∂

∂t
+ ǫk∗

(

1 +
N

∑

n=1

τnϑ
n!

∂n

∂tn

)

.
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4. Closed-form solution

To obtain the total arrangements of all fields, we initially apply the accom-
panying boundary conditions:

(4.1)

∂θ

∂z

∣

∣

∣

∣

z=±h

= ±θ0f(r, t), σzz = σrz = 0 at z = ±h,

P = P0f(r, t) at z = −h.

On simplifying Eqs. (3.7) and (3.8), we obtain

(4.2)

(

∇2 − ∂2

∂t2

)

e−∇2(θ + C) = 0.

The solution of all quantities can be derived by applying the normal modes

(4.3) {θ, C, e}(r, z, t) = {θ∗, C∗, e∗}(z)e(iξr+ωt),

where i =
√
−1 and θ∗(z), C∗(z), and e∗(z) denote the amplitudes of the corre-

sponding field variables. Using Eq. (4.3), then the governing equations, Eqs. (4.2),
(3.9), (3.10), became

(D2 − a1)(θ
∗ + C∗) + (D2 − a2)e

∗ = 0,(4.4)

(D2 − a3)θ
∗ − a4C

∗ − a5e
∗ = 0,(4.5)

c4(D2 − a1)θ
∗ − (c3D2 − c7)C

∗ + (D2 − a1)e
∗ = 0,(4.6)

where

(4.7)

D =
d

dz
, a1 =

ξ(ξr − i)

r
, a2 = a1 + ω2, a3 = a1 +

L̄q
L̄1
ϑ

,

{a4, a5} =
L̄q
L̄1
ϑ

{c7, c8}, a6 = a1c3 + c9L̄0
ϑ,

in which

(4.8)

L̄q = ω2

(

1 +
M
∑

m=1

τmq
m!

ωm
)

, L̄0
ϑ = ω

(

1 +
N−1
∑

n=1

τnϑ
n!
ωn

)

,

L̄1
ϑ = ω + ǫk∗

(

1 +
N

∑

n=1

τnϑ
n!
ωn

)

.

Equations (4.4)–(4.6) can be rearranged in six-order ordinary, homogenous, dif-
ferential equations in θ∗(z), C∗(z) and e∗(z) which can be written as:

(4.9) (D6 −A2D
4 +A1D

2 −A0){θ∗, C∗, e∗}(z) = 0,
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where the coefficients Ai are given by

(4.10)

A0 =
a2
1(a3−a4−a5c4)+a1a2a4c4−a1a5a6+a2a3a6

1+c3
,

A1 =
a1a4c4−a1a5(c3+2c4)+a2(a3c3+a4c4)+a

2
1+2a1(a3−a4)+(a2+a3−a5)a6

1+c3
,

A2 =
(a2+a3−a5)c3+(a4−a5)c5+2a1+a4−a4+a6

1+c3
.

The general solutions of Eqs. (4.10) can be stated in the form

(4.11) {θ∗, C∗, e∗}(z) =
3

∑

j=1

{Bn, B′
n, B

′′
n}e−sjz,

where Bj , B′
j and B′′

j are the integration constants and sj (j = 1, 2, 3) are
positive roots of the typical equation

(4.12) s6j −A2s
4
j +A1s

2
j −A0 = 0.

They are given, respectively, by

(4.13)
s1 =

√

1

3
[A2 + 2p1 sin(p2)] ,

s2,3 =

√

1

3
{A2 ∓ p1[

√
3 cos(p2) ± sin(p2)]} ,

in which

(4.14) p2
1 = A2

2 − 3A1, p2 =
1

3
sin−1(p0), p0 =

9A1A2 − 2A3
2 − 27A0

2p3
1

.

The relations between the parameters Bn, B′
n and B′′

n can be obtained by
using Eq. (4.11) into Eqs. (4.4) and (4.5):

(4.15) {B′
j , B

′′
j } = {β1j , β2j}Bj , j = 1, 2, 3,

where

(4.16) β1j =
a1sj(a5 − a4)

a1a6 − a3a5
, β2j = −sj(a1a6 − a3a4)

a1a6 − a3a5
.

Presently, the temperature, concentration and dilatation can be expressed in
the last form as

(4.17) {θ, C, e}(r, z, t) =
3

∑

j=1

Bj{1, β1j , β2j}e−sjz.
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The radial and axial displacement components can be obtained by using Eq.
(4.11) in Eqs. (3.7) and (3.8) in the form

(4.18)

u(r, z, t) = B4 cos(u0z) +B5 sin(u0z) + iξ
3

∑

j=1

β3jBje
−sjz,

w(r, z, t) = B6 cos(w0z) +B7 sin(w0z) −
3

∑

j=1

sjβ3jBje
−sjz,

where

(4.19)
u2

0 =
iξ

r
− 1

r2
− ξ2 − c6ω

2, w2
0 = u2

0 +
1

r2
,

β3j =
(a4 − a5)(a1a5 + a3a6)

(a1a6 − a3a5)(u2
1 + s2j )

.

Then, it is easily given the stresses and chemical potential in terms of the dis-
placements, temperature, dilatation and concentration.

The boundary conditions appeared in Eq. (4.1) may be applied with f(r, t) =
e(iξr+ωt) to get the seven parameters Bj and therefore the final form of all the
variable quantities.

5. Numerical results

Some application and validation examples are presented to put into sugges-
tion the impact of different models on the field variables. Material properties of
a metal material are introduced here

λ = 7.76 × 1010 N · m−2, µ = 3.86 × 1010 N · m−2,

k = 386 W · m−1 · K−1, ρ = 8954 kg · m−3, αt = 1.78 × 10−5 K−1,

αc = 1.98 × 10−4 m3 · kg−1, Cϑ = 383.1 J · kg−1 · K−1, T0 = 293 K,

D = 0.85 × 10−8 kg · s · m−3, k∗ = 1.2, a = 1.2 × 104 m2 · s−2 · K−1,

b = 0.9 × 106 m2 · s−2 · K−1.

For comfort, the absolute values of the accompanying thermoelastic amounts
have been received to speak of the outcomes:

{θ̄, w̄, C̄, σ4} =
1

θ0
{θ, w,C, σ13}(r, z, t), P̄ =

1

θ3
0

P (r, z, t),

{ū, σ1, σ2, σ3} =
1

θ2
0

{u, σ11, σ22, σ33}(r, z, t).

Numerical results are obtained for P0 = 150, θ0 = 10, ω0 = 1.95, ω1 = 0.05,
ξ = π/3, τq = 0.1, τϑ = 0.05, r = 4, h = 0.8 and t = 0.3.
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Results of the temperature, dilatation, displacements and concentration due
to simple G–N of type II, SPL G–N of type II, simple G–N of type III, SPL G–N
of type III and DPL G–N of type III thermoelasticity models are presented in
Tables 1 and 2 for z̄ = 0.5. Similar results of the stresses and chemical potential
are reported in Tables 3 and 4. Additional sample graphs are plotted in Figs. 1–10
through the circular plate thickness to show the impact of all models on the field
variables. In Tables 1–4, the relative error is presented between two parentheses
and calculated according to the formula

(

simple value − modified value
modified value

)

× 100%.

Table 1. Effect of G–N II thermoelasticity theories on temperature, dilatation,
displacements and concentration of the thicker circular plate.

θ̄ ē ū w̄ C̄

Simple 4.872802 1.679656 3.876542 2.636469 4.831283

SPL

N = 1 4.580739 1.888093 3.026801 2.003210 4.528736

N = 2 4.556325 1.908020 2.961713 1.973270 4.503267

N = 3 4.554772 1.909317 2.957580 1.971346 4.501646

N = 4 4.554697 1.909380 2.957380 1.971247 4.501568

N = 5 4.554694 1.909382 2.957372 1.971243 4.501565

(6.98%) (−12.03%) (31.08%) (33.74%) (7.32%)

N = 6 4.554694 1.909383 2.957372 1.971243 4.501565

Table 2. Effect of G–N III thermoelasticity theories on temperature, dilatation,
displacements and concentration of the thicker circular plate.

θ̄ ē ū w̄ C̄

Simple 5.796679 1.235940 7.630031 8.521795 5.773355

SPL

N = 1 5.439970 1.386453 5.934660 5.411628 5.411411

N = 2 5.409577 1.400672 5.804331 5.189524 5.380498

N = 3 5.407646 1.401597 5.796060 5.175372 5.378534

N = 4 5.407553 1.401642 5.795659 5.174678 5.378439

N = 5 5.407550 1.401644 5.795643 5.174650 5.378436

(7.20%) (-11.82%) (31.65%) (64.68%) (7.34%)

N = 6 5.407550 1.401644 5.795643 5.174649 5.378436

DPL

N = 1 5.511926 1.354389 6.248526 5.950472 5.484550

N = 2 5.476047 1.361448 6.117328 5.694611 5.448331

N = 3 5.473797 1.362043 6.108669 5.678119 5.446057

N = 4 5.473693 1.362078 6.108244 5.677322 5.445952

N = 5 5.473689 1.362079 6.108228 5.677291 5.445948

(5.90%) (−9.26%) (24.91%) (50.10%) (6.01%)

N = 6 5.473689 1.362080 6.108227 5.677290 5.445947
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Table 3. Effect of G–N II thermoelasticity theories on stresses and chemical
potential of the thicker circular plate.

σ1 σ2 σ3 σ4 P̄

Simple 5.277423 3.355263 4.441777 1.144026 2.053667

SPL

N = 1 4.114443 2.613374 3.454152 0.833648 1.925748

N = 2 4.025357 2.556547 3.378473 0.816412 1.914988

N = 3 4.019700 2.552939 3.373667 0.815308 1.914304

N = 4 4.019426 2.552764 3.373434 0.815252 1.914271

N = 5 4.019415 2.552757 3.373425 0.815250 1.914270

(31.30%) (31.30%) (31.67%) (40.32%) (7.28%)

N = 6 4.019415 2.552757 3.373425 0.815249 1.914269

Table 4. Effect of G–N III thermoelasticity theories on stresses and chemical
potential of the thicker circular plate.

σ1 σ2 σ3 σ4 P̄

Simple 10.411435 6.630057 8.795727 3.548307 2.452755

SPL

N = 1 8.092957 5.151280 6.830322 2.305653 2.299332

N = 2 7.914679 5.037564 6.679129 2.216085 2.286232

N = 3 7.903364 5.030347 6.669533 2.210377 2.285400

N = 4 7.902816 5.029997 6.669067 2.210097 2.285360

N = 5 7.902794 5.029984 6.669049 2.210086 2.285358

(31.74%) (31.81%) (31.89%) (60.55%) (7.32%)

N = 6 7.902794 5.029983 6.669049 2.210086 2.285358

DPL

N = 1 8.522240 5.425096 7.194321 2.522531 2.330328

N = 2 8.342830 5.310655 7.042247 2.420561 2.314966

N = 3 8.330986 5.303100 7.032205 2.413974 2.314001

N = 4 8.330405 5.302730 7.031713 2.413655 2.313957

N = 5 8.330383 5.302716 7.031694 2.413643 2.313955

(24.98%) (25.03%) (25.09%) (47.01%) (6.00%)

N = 6 8.330382 5.302715 7.031693 2.413643 2.313955

According to Tables 1-4, it can be concluded that:

• The SPL G–N of type II should be applied with N = 5 to get more accurate
results. So, we present the relative errors at this value only. The relative
errors increase as N decreases.

• Also, the SPL G–N of type III or DPL G–N of type III should be applied
with N = 5 to obtain more precise outcomes

• The SPL G–N of type II, SPL G–N of type III and DPL G–N of type III
models produce large field variables except dilatation comparing with the
simple G–N of types II and III models.
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• For SPL or DPL models the results decrease (increases for dilatation only)
as N increases. The decreasing (increasing for dilatation only) amounts
may be vanished for N ≥ 5

• The SPL G–N of type II SPL G–N of type III and DPL G–N of type III
give temperature, concentration and chemical potential with the smallest
relative error comparing with the simple models

Fig. 1. Effect of G–N models on the temperature θ̄ through the circular plate thickness.

Fig. 2. Effect of G–N models on the dilatation ē through the circular plate thickness.



248 A. M. Zenkour

• The dilatation possesses negative moderate relative errors.

• The radial, hoop and axial stresses possess large relative errors (about
24%–32%) while the shear stress possesses the highest relative errors (about
40%–61%).

Fig. 3. Effect of G–N models on the radial displacement ū through the circular plate
thickness.

Fig. 4. Effect of G–N models on the axial displacement w̄ through the circular plate
thickness.
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Now, Figs. 1–10 are presented as a sample to illustrate the effect of all models
on the field quantities along the thickness z̄ = z/h of the circular plate. In Fig. 1,
the temperature increases through the plate thickness up to the plane z̄ ∼= 0.4
in which θ̄ has its maximum values. The relative error between models increases
as z̄ increases. Also, the simple and refined G–N of type III models gives the
largest temperature θ̄.

Fig. 5. Effect of G–N models on the radial stress σ1 through the circular plate thickness.

Fig. 6. Effect of G–N models on the hoop stress σ2 through the circular plate thickness.
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Figure 2 shows that the dilatation ē increases through the plate thickness
up to the plane z̄ ∼= 0.3 in which ē has its maximum values. The relative error
between models increases as z̄ increases. Also, the simple and refined G–N of
type III models gives the smallest dilatation ē.

Figure 3 shows that the radial displacement ū increases through the plate
thickness up to the plane z̄ ∼= 0.5 and above in which ū has its maximum values

Fig. 7. Effect of G–N models on the axial stress σ3 through the circular plate thickness.

Fig. 8. Effect of G–N models on the shear stress σ4 through the circular plate thickness.
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while ū has its minimum values at z̄ ∼= −0.65. Once again, the relative error
between models increases as z̄ increases. Also, the simple and refined G–N of
type III models gives the greatest radial displacement ū.

Figure 4 shows that the axial displacement w̄ increases through the plate
thickness down to the plane z̄ ∼= −0.475 in which w̄ has its maximum values

Fig. 9. Effect of G–N models on the concentration C̄ through the circular plate thickness.

Fig. 10. Effect of G–N models on the chemical potential P̄ through the circular plate
thickness.
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while w̄ has its minimum near to the upper face. The relative error between
models increases as z̄ decreases. Also, the simple and refined G–N of type III
models gives the greatest axial displacement w̄.

Figures 5 and 6 show that the radial σ1 and hoop σ2 stresses have similar
behaviors through the plate thickness. The maximum values of radial stress σ1

occur at z̄ ∼= 0.173 and those of σ2 occur at z̄ ∼= 0.12. However, the smallest
stresses occur near the lower surface; at z̄ = 0.15 for σ1 and at z̄ = 0.12 for σ2.
The simple and refined G–N of type III models gives the greatest stresses σ1

and σ2.
Figures 7 and 8 show the axial σ3 and shear σ4 stresses through the thickness

of the circular plate. Both the axial σ3 and shear σ4 stresses vanish at the lower
and upper surfaces of the plate to satisfy the boundary conditions at the lower
and upper surfaces of the plate. However, the maximum values of σ3 occur at
z̄ ∼= 0.075 and the maximum values of σ4 occur at z̄ ∼= −0.35. The simple and
refined G–N of type III models gives the greatest axial σ3 and shear σ4 stresses.

Figures 9 and 10 show that the concentration C̄ and the chemical potential
P̄ have similar behaviors through the plate thickness. The maximum values of
concentration C̄ occur at z̄ ∼= 0.4 and those of chemical potential P̄ occur at
z̄ ∼= 0.42. However, the smallest values of both C̄ and P̄ occur at the lower
surface of the circular plate. The simple and refined G–N of type III models
gives the greatest concentration and chemical potential.

So, it is concluded for all variable field quantities, except for dilatation, that
the SPL G–N of type II gives the smallest quantity while the simple G–N of
type III gives the greatest one. However, the SPL G–N of type II gives the
greatest dilatation while the simple G–N of type III gives the smallest one. The
DPL G–N of type III yields results intermediate those of SPL G–N of type III and
the simple G–N of type III. The behaviors are the same for the temperature θ̄,
the dilatation ē, the concentration C̄, and the chemical potential P̄ . All these
quantities start with zero values then they are no longer increasing through the
circular plate thickness and get their maximum values at different positions.

6. Conclusions

The models of Green and Naghdi of types II and III are extended here to
obtain novel and exact models of single- and dual-phase-lag of higher-order time-
derivative multi terms. The heat of mass diffusion formula just as the constitutive
conditions for stresses and chemical potential are provided to the plan of the
present issue. The framework is understood, and all field variables are got for the
thermal diffusion of a limited thick circular plate. Some approval illustrations are
introduced to analyze the straightforward and adjusted Green–Naghdi models.
The illustration plots are presented for all variable quantities through the circular
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plate thickness. The single-phase-lag Green–Naghdi of type II model gives the
smallest field quantity, except dilatation, while the simple Green–Naghdi of type
III model gives the greatest one. It is to be noted that the dual-phase lag G–N of
type III model yields results intermediate between those of the single-phase-lag
Green–Naghdi of type III and the simple Green–Naghdi of type III models. Some
outcomes are reported in tables to serve as benchmarks for future comparisons
with other researchers.
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