PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hille-Wintner type comparison criteria for the half-linear differential equations of third order

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We obtain an analogue of the integral Hille-Wintner comparison theorem for the half-linear differential equations of third order. We also give an example involving a differential equation of Euler type, which gives a condition under which half-linear differential equations have weak property B.
Wydawca
Rocznik
Strony
99--104
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Institute of Mathematics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia
Bibliografia
  • [1] M. Aktas, M. Tiryaki and A. Zafer, Oscillation criteria for third-order nonlinear functional differential equations, Appl. Math. Lett. 23 (2010), no. 7, 756-762.
  • [2] O. Došlý and P. Ŕehák, Half-Linear Differential Equations, North-Holland Math. Stud. 202, Elsevier, Amsterdam, 2005.
  • [3] J. Džurina and B. Bacutíková, Oscillation and asymptotic behavior of higher-order nonlinear differential equations, Int. J. Math. Math. Sci. 2012 (2012), Article ID 951898.
  • [4] L. Erbe, Comparison theorems of Hille-Wintner type for third order linear differential equations, Bull. Aust. Math. Soc. 21 (1980), 175-188.
  • [5] I. Kiguradze, The problem of oscillation of solutions of nonlinear differential equations, Differ. Equ. 1(1965), 773-782.
  • [6] I. Kiguradze and T. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Math. Appl. 89, Kluwer Academic Publishers, Dordrecht, 1993.
  • [7] Z. D. M. Cecchi and M. Marini, An equivalence theorem on properties A, B for third order differential equations, Ann. Mat. Pura Appl. (4) 173 (1997), 373-389.
  • [8] J. D. Mirzov, Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations, Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14, Masaryk University, Brno, 2004.
  • [9] I. Mojsej and A. Tartaľová, Sufficient conditions for the existence of some nonoscillatory solutions of third-order nonlinear differential equations, Carpathian J. Math. 27 (2011), no. 1, 105-113.
  • [10] M. Naito, Existence and asymptotic behavior of positive solutions of higher-order quasilinear ordinary differential equations, Math. Nachr. 279 (2006), no. 1-2, 198-216.
  • [11] A. Naylor and G. Sell, Linear Operator Theory in Engineering and Science, Appl. Math. Sci. 40, Springer-Verlag, New York, 2000.
  • [12] J. Rovder, On monotone solutions of a third-order differential equation, J. Comput. Appl. Math. 66 (1996), no. 1-2, 421-432.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19c5ca39-0863-4bfb-9c7e-81fa9ee01e1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.