PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of temperature on synthetic data-based calibration models for low resolution open-path FTIR spectroscopy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the problem of determining the gas concentration under conditions of changing temperatures. The solution to this problem is based on spectral measurements using chemometric models. Such problems arise when measuring gases during various industrial processes, mainly the pyrolysis process. Chemometric models are built using synthetic calibration data. Line-by-line and statistical models were applied for spectra modelling. The effect of temperature on extracting the gas concentration from spectra of various resolutions was determined. Next, the global model was built and tested using calibration data for specific temperature ranges. The properties of the linear and nonlinear partial least-squares (PLS) models that were applied to the considered issues were demonstrated. CO and CH4 were used as example gases.
Słowa kluczowe
Rocznik
Strony
33--42
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • Institute of Electronics and Information Technology, Lublin University of Technology, 38A Nadbystrzycka St., 20-618 Lublin, Poland
Bibliografia
  • [1] Z. Bacsik, J. Mink, and G. Keresztury, “FTIR Spectroscopy of the atmosphere. I. principles and methods”, Applied Spectroscopy Reviews 39 (3), 295-363 (2004).
  • [2] D.W.T. Griffith, N.M. Deutscher, C. Caldow, G. Kettlewell, M. Riggenbach, and S. Hammer, “A Fourier transform infrared trace gas and isotope analyser for atmospheric applications”, Atmospheric Measurement Techniques 5, 2481-2498 (2012).
  • [3] M. Kastek, T. Piątkowski, and P. Trzaskawka, “Infrared imaging Fourier transform spectromter as the stand-off gas detection system”, Metrology and Measurement Systems 18 (4), 607-620 (2011).
  • [4] T.E.L. Smith, M.J. Wooster, M. Tattaris, and D.W.T. Griffith, “Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of clear air and polluted plumes”, Atmospheric Measurement Techniques 4, 97-116 (2011).
  • [5] J. Bak and S. Clausen, “FTIR emission spectroscopy methods and procedures for real time quantitative gas analysis in industrial environments”, Measurement Science and Technology 13, 150-156 (2002).
  • [6] A.V. Sepman and L.P.H. Goey, “Plate reactor as an analysis tool for rapid pyrolysis of biomass”, Biomass and Bioenergy 35, 2903-2909 (2011).
  • [7] K. Schafer, K. Brockmann, J. Heland, P. Wiesen, C. Jahn, and O. Legras, “Multipass open-path Fourier-transform infrared measurements for nonintrusive monitoring of gas turbine exhaust composition”, Applied Optics 44 (11), 2189-2201 (2005).
  • [8] A. Sanchez, E. Eddings, and F. Mondragon, “Fourier Transform Infrared (FTIR) online monitoring of NO, N2O, and CO2 during oxygen-enriched combustion of carbonaceous materials”, Energy Fuels 24, 4849-4853 (2010).
  • [9] T.H. Song, “Spectral remote sensing for furnaces and flames”, Heat Transfer Engineering 29 (4), 417-428 (2008).
  • [10] S. Rego-Barcena, R. Saari, R. Mani, S. El-Batroukh, and M.J. Thomson, “Real time, non-intrusive measurement of particle emissivity and temperature in coal-fired power plants”, Measurement Science and Technology 18, 3479-3488 (2007).
  • [11] Z. Bielecki, J. Janucki, A. Kawalec, J. Mikołajczyk, N. Pałka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, ”Sensors and systems for the detection of explosive devices - an overview”, Metrology and Measurement Systems 19 (1), 3-28 (2012).
  • [12] J.R. Castro-Suarez, L.C. Pacheco-Londo˜no, M. Veˇelez-Reyes, M. Diem, T.J. Tague, and S.P. Hernandez-Rivera, “Open-path FTIR detection of explosives on metallic surfaces”, in Fourier Transforms - New Analytical Approaches and FTIR Strategies, ed. G. Nikolic, pp. 431-458, InTech, 2011.
  • [13] L. Shao, P.R. Griffiths, and A.B. Leytem, “Advances in data processing for open-path fourier transform infrared spectrometry of greenhouse gases”, Analytical Chemistry 82 (19), 8027-8033 (2010).
  • [14] J. Bak, “Retrieving CO concentrations form FT-IR spectra with nonmodeled interferences and fluctuating baselines using PCR model parameters”, Applied Spectroscopy 55 (5), 591-597 (2001).
  • [15] J. Mroczka, “The cognitive process in metrology”, Measurement 46, 2896-2907 (2013).
  • [16] P.W. Morrison and O. Taweechokesupsin, “Calculation of gas spectra for quantitative Fourier transform infared spectroscopy of chemical vapor deposition”, J. Electrochem. Soc. 145 (9), 3212-3219 (1998).
  • [17] D.W.T. Griffith, “Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra”, Applied Spectroscopy 50 (1), 59-70 (1996).
  • [18] J. Mroczka and D. Szczuczyński, “Improved regularized solution of the inverse problem in turbidimetric measurements”, Applied Optics 49 (24), 4591-4603 (2010).
  • [19] J. Mroczka and D. Szczuczyński, “Simulation research on improved regularized solution of inverse problem in spectral extinction measurements”, Applied Optics 51 (11), 1715-1723 (2012).
  • [20] J. Mroczka and D. Szczuczyński, “Improved technique of retrieving particle size distribution form angular scattering measurements”, J. Quantitative Spectroscopy & Radiative Transfer 129, 48-59 (2013).
  • [21] J. Bak, “Modeling of gas absorption cross sections by use of principal-component-analysis model parameters”, Applied Optics 41 (15), 2840-2846 (2002).
  • [22] M.D. Coleman and T.D. Gardiner, “Sensitivity of model-based quantitative FTIR to instrumental and spectroscopic database error sources”, Vibrational Spectroscopy 51, 177-183 (2009).
  • [23] A.V. Sepman, R. den Blanken, R. Schepers, and L.P.H. de Goey, “Quantitative Fourier transform infrared diagnostics of the gas-phase composition using the HITRAN database and the equivalent width of the spectral features”, Applied Spectroscopy 63 (11), 1211-1222 (2009).
  • [24] S. Cięszczyk, “A local model and calibration set ensemble strategy for open-path FTIR gas measurement with varying temperature”, Metrology and Measurement Systems 3 (21), 513-524 (2013).
  • [25] R.W. Court and M.A. Sephton, “Quantitative flash pyrolysis Fourier transform infrared spectroscopy of organic materials”, Analytica Chimica Acta 639, 62-66 (2009).
  • [26] S. Cięszczyk, “A multi-band integrated virtual calibration- inversion method for open path FTIR spectrometry”, Metrology and Measurement Systems 2 (20), 287-298 (2013).
  • [27] E. Granada, P. Eguia, J.A. Vilan, J.A. Comesana, and R. Comesana, “FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process”, Renewable Energy 41, 416-421 (2012).
  • [28] W. Wojcik, S. Cięszczyk, and T. Golec. “Narrow-band spectra models for diagnostic of gases produced during the biomass production”, in Environmental Engineering III, eds. L. Pawłowski, M. Dudzińska, and A. Pawłowski, pp. 597-601, CRC Press, 2010.
  • [29] J. Mroczka and D. Szczuczyński, “Inverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurement”, Metrology and Measurement Systems 16 (3), 333-357 (2009).
  • [30] D. Szczuczyński and J. Mroczka, “Comparing the quality of solutions of inverse problem in nephelometric and turbidimetric measurements”, Optica Applicata 39 (3), 521-531 (2009).
  • [31] A.J. de Castro, A.M. Lerma, F. Lopez, M. Guijarro, C. Diez, C. Hernando, and J. Madrigal, “Open-path Fourier transform infrared spectrometry characterization of low temperature combustion gases in biomass fuels”, Infrared Physics & Technology 51, 21-30 (2007).
  • [32] I. Fernandez-Gomez, A.J. de Castro, M. Guijarro, J. Madrigal, J.M. Aranda, C. Diez, C. Hernando, F. Lopez, “Characterization of forest fuels in a Mass Loss Calorimeter by short open-path FTIR spectroscopy”, J. Quantitative Spectroscopy & Radiative Transfer 112, 519-530 (2011).
  • [33] P. Stelmachowski, S. Sirotin, P. Bazin, F. Mauge, and A. Travert, “Speciation of adsorbed CO2 on metal oxides by a new 2-dimensional approach: 2D infrared inversion spectroscopy (2D IRIS)”, Phys. Chem. Chem. Phys. 15, 9335-9342 (2013).
  • [34] T. Chen and E. Martin, “The impact of temperature variations on spectroscopic calibration modelling: a comparative study”, J. Chemometrics 21, 198-207 (2007).
  • [35] T. Pustelny, M. Procek, E. Maciak, A. Stolarczyk, S. Drewniak, M. Urbańczyk, M. Setkiewicz, K. Gut, and Z. Opilski, “Gas sensors based on nanostructures of semiconductors ZnO and TiO2”, Bull. Pol. Ac.: Tech. 60 (4), 853-859 (2012).
  • [36] T. Pustelny, S. Drewniak, M. Setkiewicz, E. Maciak, M. Urbańczyk, M. Procek, K. Gut, Z. Opilski, J. Jagiello, and L. Lipinska, “The sensitivity of sensor structures with oxide grapheme exposed to selected gaseous atmospheres”, Bull. Pol. Ac.: Tech. 61 (3), 705-710 (2012).
  • [37] R. Ionescu and E. Llobet, “Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors”, Sensors and Actuators B 81, 289-295 (2002).
  • [38] L.S. Rothman, I.E. Gordon, A. Barbe, D. C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.- P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, and J.V. Auwera, “The HITRAN 2008 molecular spectroscopic database”, J. Quantitative Spectroscopy & Radiative Transfer 110, 533-572 (2009).
  • [39] L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwars, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition”, J. Quant. Spectrosc. Radiat. Transfer 60 (5), 665-710 (1998).
  • [40] V. Becher, S. Clausen, A. Fateev, and H. Spliethoff, “Validation of spectral gas radiation models uder oxyfuel conditions. Part A: Gas cell experiments”, Int. J. Greenhouse Gas Control 5S, S76-S99 (2011).
  • [41] P. Riviere and A. Soufiani, “Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature”, Int. J. Heat and Mass Transfer 55, 3349-3358 (2012).
  • [42] A. Soufiani and J. Taine, “High temperature gas radiative property parameters of statistical narrow-band models for H2O, CO2 and CO, and correlated-k model for H2O and CO2”, Int. J. Heat and Mass Transfer 40, 987-991 (1997).
  • [43] B. Walczak and D.L. Massart, “The radial basis functions - partial least squares approach as a flexible non-linear regression technique”, Analytica Chimica Acta 331 (3), 177-185 (1996).
  • [44] M. Daszykowski, S. Serneels, K. Kaczmarek, P. Van Espen, C. Croux, and B. Walczak, “TOMCAT: A MATLAB toolbox for multivariate calibration techniques”, Chemometrics and Intelligent Laboratory Systems 85, 269-277 (2007).
  • [45] M. Czerwiński, J. Mroczka, T. Girasole, G. Gouesbet, and G. Grehan, “Light-transmittance predictions under multiplelight- scattering conditions. I. Direct problem: hybrid-method approximation”, Applied Optics 40 (9), 1514-1524 (2001).
  • [46] M. Czerwiński, J. Mroczka, T. Girasole, G. Gouesbet, and G. Grehan, “Light-transmittance predictions under multiple-lightscattering conditions. II Inverse problem: particle size determination”, Applied Optics 40 (9), 1525-1531 (2001).
  • [47] S. Clausen and J. Bak, “A hot gas facility for high-temperature spectrometry”, Measurement Science and Technology 13 (8), 1223-1229 (2002).
  • [48] T. Fleckl, H. Jager, and I. Obernberger, “Experimental verification of gas spectra calculated for high temperatures using the HITRAN/HITEMP database”, J. Physics D: Applied Physics 35, 3138-3144 (2002).
  • [49] Riso National Laboratory for Sustainable Energy, Technical University of Denmark http://130.226.56.153/ofd/ftir/downloads.htm.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19c56d49-bed9-431c-bbc3-4f5a81cba560
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.