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Influence of temperature on synthetic data-based calibration models

for low resolution open-path FTIR spectroscopy
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Abstract. This article presents the problem of determining the gas concentration under conditions of changing temperatures. The solution

to this problem is based on spectral measurements using chemometric models. Such problems arise when measuring gases during various

industrial processes, mainly the pyrolysis process. Chemometric models are built using synthetic calibration data. Line-by-line and statistical

models were applied for spectra modelling. The effect of temperature on extracting the gas concentration from spectra of various resolutions

was determined. Next, the global model was built and tested using calibration data for specific temperature ranges. The properties of the

linear and nonlinear partial least-squares (PLS) models that were applied to the considered issues were demonstrated. CO and CH4 were

used as example gases.
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1. Introduction

Open-path Fourier transform infrared (OP-FTIR) spec-

troscopy is used to analyse atmospheric pollution [1–4], gases

emitted from industrial processes [5], such as pyrolysis [6],

and combustion [7, 8]. This type of measurement can be used

to monitor various processes. CO2 and H2O are the main gas-

es from typical combustion processes. The most commonly

used spectral region for combustion diagnostics is the spec-

tral range for carbon dioxide in the 4.3 µm region. This region

is used for passive remote diagnostics [9] and for temperature

determination [10]. Pyrolysis, in turn, is used in the analy-

sis of organic materials (biomass) and for the production of

high-energy gases, which are subsequently used for combus-

tion. The main gases produced in the pyrolysis process are

CO, CO2 and CH4. New area application of remote sensing

is explosive detection [11] where promising results are ob-

tained with OP-FTIR [12].

The most difficult part of extracting information from a

measured spectrum is building a suitable calibration mod-

el. Typically, the calibration model is built using calibration

data, which are generated from empirical processes in the

laboratory under strictly controlled conditions with respect

to the temperature and pressure, as well as the configuration

of the spectrometer. The most commonly used models for

gas content determination in OP-FTIR gas measurements are

classical least-squares (CLS) and partial least-squares (PLS)

regression [13]; a less frequently used method is principal

component regression (PCR) [14]. Calibration is a laborious

and often expensive process. If the instrumental (e.g., resolu-

tion) or environmental (e.g., temperature, pressure) conditions

change during the measurement, the measurement must be re-

peated. In cases of indirect inference in metrology, modelling

can be used instead of an expensive and difficult empirical

process [15]. Data used to creating the inverse model can

be generated with applying a forward model. In addition, the

OP-FTIR spectroscopy models of gas spectra can be simulated

[16, 17]. The model, which converts physical parameters to a

measurable quantity, can be used as a direct model in an itera-

tive comparison with measured data [18–20]. Due to the high

computational complexity of gas spectra modelling methods,

special acceleration techniques have been proposed [21]. Un-

fortunately, when comparing measured data to the synthetic

data from the direct model by the least-squares methods, there

are several input variables, which may lead to significant er-

rors if not taken into account [22]. These errors may result

from errors in the gas parameter database or from instrument

misalignment. An experimenter does not provide a control

of gas database, the parameters are validated and corrected

by the measurements of different authors. Instrumental errors

(ILS, instrumental line shape) are more important. An appro-

priate parameterisation of the data (spectra) can reduce ILS.

One approach is the measurement and comparison of the in-

tegrated absorption of particular rotational lines [23, 24] or

multiple lines (band, spectral range) [25–27]. For low resolu-

tion spectra, in which particular rotational lines of the gas are

not visible, the ILS error is smaller than that of higher res-

olution measurements. Finally, very low resolution (25 cm−1

average band absorption) statistical gas spectra models can be

used for parameterisation [28].

In combustion processes and in biomass pyrolysis, signifi-

cant changes in temperature occur in addition to the variability

in gas concentration. In such cases, the least-squares approach

is the most common, and this approach provides a solution

to the so-called inverse problem [29, 30]. This problem aris-

es from the difficulty in formulating a chemometric model

that can determine the content of the ingredients based on the

absorbance and its temperature-dependence. One of the most
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frequently used methods that addresses this problem is the

use of one selected mean temperature, which can cause large

errors if the temperature varies from this value significantly

[31]. It is known that the temperature of the measured gases

can be employed to correct the extracted gas content [32] or

can eventually be used as an additional variable in the inver-

sion process [33, 34]. In resistive sensors [35,36], temperature

value or its additional modulation [37] can result in increase

of their sensitivity.

This article aims to investigate the possibility of building

a calibration model that is based on gas spectra modelling and

has low temperature cross-sensitivity. A low resolution mea-

surement (0.5; 1; 2; 4 cm−1) and a statistical narrow band

(SNB) model are investigated.

2. Line-by-line modelling

The most popular method for modelling gas spectra uses HI-

TRAN [38] database. This database contains individual para-

meters for calculating spectral lines, along with the parameters

for the effect of various factors, such as temperature, pressure

and the content of other components in the gas mixture, on

the shape of the lines. The transmittance of a gas can be

calculated as follows [39]:

τ = exp

[

−S(T ) · g(v − v0)
Pi

k · T l

]

, (1)

where S(T ) – intensity of a spectral line, g(v − v0) – nor-

malised line shape function, v0 – spectral line position T –

gas temperature, Pi – gas partial pressure, k – Boltzmann

constant, l – length of the studied path.

The strength of the line changes with temperature [39]:

S(T ) = S(T0) ·
Q(T0)
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where c – speed of the light, h – Planck constant, T0 = 293 K,

E′′ – the lower state energy, ν0 – spectral line position, and

Q – the total internal partition sum.

Two main phenomena broaden spectral lines:

• collisional broadening, which causes the Lorentzian shape

of spectral lines,

• Doppler broadening, which causes the Gaussian shape of

spectral lines.

Lorentzian line shape:

gL(v − v0) =
1

π

γL

γ2

L
+ (v − v0)2

. (3)

Lorentzian half-width at half maximum (height):

γL(v) = ga ·
(

296

T

)n

· P, (4)

where ga – air-broadened half-width, n – temperature coeffi-

cient, and P – total pressure.

Gaussian line shape caused by Doppler broadening:

gG(v − v0) =
1

γG

√
π

exp

(

− (v − v0)
2

γ2

G

)

. (5)

Gaussian half-width at half maximum (height):

γG(v) =
v0

c

(

2 · R · T · ln(2)

Mw

)

, (6)

c – speed of light, R – gas constant, Mw – molecular weight

of gas molecule.

The final shape of the spectral lines is a convolution of

the Lorentzian and Gaussian shapes and is known as a Voigt

profile.

The spectrum measured in a real spectrometer is a convo-

lution of real gas spectrum with the instrumental line shape:

τILS =

∞
∫

0

τ(v) · ILS(v − v0) · dv. (7)

For a given spectrometer resolution rs, the most frequent-

ly used triangular apodisation ILS (Fig. 1) is the following

[16]:

ILS(v − v0) =
2

rs

sin2 (π(v − v0)/rs)

(π(v − v0)/rs)
2

. (8)

Fig. 1. Example methane absorbance spectrum (HITRAN simula-

tion) with triangle apodisation and 0.5 cm−1 resolution

3. SNB model

Statistical gas spectra models were developed to decrease

the computational effort required to calculate radiative trans-

fer. Such models are mainly used for calculating the average

transmissivity of 25 cm−1 bands (Fig. 2). Depending on the

method for averaging the lines in the band, various types of

models are formed. SNB model parameters are updated with

the latest spectroscopic databases and empirical spectroscopic

measurements [40, 41]. The average SNB band transmissivity

of a gas is expressed as follows [42]:

τ = exp

[

−2
γ

δ

(
√

1 + xplk
δ

γ
− 1

)]

, (9)

where l – length of path, p – total pressure, x – gas molar

fraction, k [cm−1 atm−1] – mean line intensity to the spacing

ratio, δ [cm] – mean line spacing, and γ [cm−1] – typical

average line half-width.
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Fig. 2. Example CO transmittance spectrum (SNB simulation)

The last parameter changes with temperature [42]:

γCO =
p

ps

[

0.075 · XCO2

(

Ts

T

)0.6

+ 0.12 · XH2O

(

Ts

T

)0.82

+ 0.06 ·
(

Ts

T

)0.7

· (1 − XCO2 − XH2O)

]

,

(10)

γCO2 =
p

ps

(

Ts

T

)0.7

[0.07 · XCO2 + 0.1 · XH2O

+ 0.058 · (1 − XCO2 − XH2O)] ,

(11)

γH2O =
p

ps

{

0.462 · XCO2

Ts

T

+

(

Ts

T

)0.5

[0.079 (1 − XCO2 − XO2)

+ 0.106XCO2 + 0.036XH2O]} ,

(12)

γCH4
= 0.051

(

Ts

T

)0.75

, (13)

where ps = 1 atm, and Ts = 296 K.

4. Gas content determination based

on a measured spectrum

Methods for determining the constituents using OP-FTIR

measurements can be divided into two groups: the chemo-

metrics method and the method of minimisation of the differ-

ence between the measured spectrum and the spectrum from

the direct model (iterative methods). Chemometrics methods

are preferred in the spectroscopy community. Moreover, iter-

ative methods often require the assistance of an expert. Two

methods, PLS and RBF-PLS (Radial Basis Functions PLS)

[43, 44], were used to build the chemometric model. Mod-

elling was performed for methane and carbon monoxide. The

simulation only takes into account the absorption of gases

and assumes the absence of multiple scattering in the parti-

cle phase. These assumptions can cause additional measure-

ment errors in the absorption coefficients, particularly for wa-

ter vapour [45, 46].

4.1. Methane simulation. To test the effect of temperature

on the determination of the methane content using the chemo-

metrics method, an appropriate data set consisting of 441

points was produced.

The model built for creating spectra at 303 K was tested at

5 temperatures: 283 K, 293 K, 303 K, 313 K and 323 K. As

shown in Figs. 3–6, errors for temperatures that differ from

that of the calibration set are evident. Additionally, for PLS,

the error increases with decreasing resolution. As a result,

the error is nearly two times larger for the 4 cm−1 resolution

than for the 0.5 cm−1 resolution. For RBF-PLS, the resolu-

tion did not change the temperature-dependent errors, and the

temperature errors are comparable to those for PLS and the

0.5 cm−1 resolution.

Fig. 3. Error caused by temperature effects in the PLS (left) and RBF-PLS (right) models; 0.5 cm−1 resolution, CH4
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Fig. 4. Error caused by temperature effects in the PLS (left) and RBF-PLS (right) models; 1 cm−1 resolution, CH4

Fig. 5. Error caused by temperature effects in the PLS (left) and RBF-PLS (right) models; 2 cm−1 resolution, CH4

Fig. 6. Error caused by temperature effects in the PLS (left) and RBF-PLS (right) models; 4 cm−1 resolution, CH4

To eliminate the effects of temperature on the determina-

tion of the methane content using chemometric models, an

appropriate calibration set can be used. The set must include

all the analysed temperatures (Fig. 7). In this case, only the

2 cm−1 and 4 cm−1 resolutions were considered (Figs. 8, 9).

Better results were obtained for the nonlinear RBF-PLS. The

temperature has a larger influence at the lower concentration

of CH4; this influence can be observed as the wider spread

in the points for a particular concentration. Each point for

every concentration represents a different temperature (com-

pare Fig. 7).
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Fig. 7. Calibration and test data for the temperature-robust global model for methane

Fig. 8. Temperature error for global calibration models: PLS (left) and RBF-PLS (right), 2 cm−1, CH4

Fig. 9. Temperature error for global calibration models: PLS (left) and RBF-PLS (right), 4 cm−1, CH4

4.2. CO SNB model. The next stage of the research was

to use the SNB model parameterisation and build an appro-

priate calibration model. In SNB, the spectra lines are in-

tegrated in 25 cm−1 bands, resulting in 12 bands between

2000 and 2250 cm−1 for CO. As a preliminary point, a mod-

el for the 300 K temperature was built and tested for tem-
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peratures from 270 to 330 K (Fig. 10). The PLS method

yielded errors that were too large, even for the calibration

data. For RBF-PLS, the temperature effects were similar to

those found earlier for methane and can be approximated as

0.5%/K.

The next step was to generate a set of data (Fig. 11). It

turned out, however, that a single model built from the cal-

ibration data for a temperature range of 270–490 K showed

significant errors, particularly for small concentration ranges

(Fig. 12).

Fig. 10. Error caused by temperature effects in the RBF-PLS model with SNB parameterisation, 25 cm−1 resolution of CO

Fig. 11. CO data set, temperature span of 270–490 K

Fig. 12. Temperature errors for global calibration models: PLS (left) and RBF-PLS (right) with SNB spectra parameterisation at 25 cm−1

for CO in the 270–490 K temperature range
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Fig. 13. CO data set for the 400–500 K temperature range

Fig. 14. Temperature errors for global calibration models: PLS (left) and RBF-PLS (right), with SNB spectra parameterisation at 25 cm−1,

for CO, in the 400–500 K temperature range

Fig. 15. Temperature errors for global calibration models: PLS (left) and RBF-PLS (right), at 4 cm−1 resolution for CO, for the 270–470

K temperature range
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Fig. 16. Temperature errors for global calibration models: PLS (left) and RBF-PLS (right), 4 cm−1 resolution for CO, for the 370–470 K

temperature range

A single model in the range of 270–490 K cannot be used

for data based on such a small resolution. Thus, a set spanning

100 K from 400–500 K was created (Fig. 13). Unfortunate-

ly, the errors resulting from the temperature variation for the

PLS model can reach up to 10%, and these errors are par-

ticularly significant for smaller concentrations (Fig. 14). For

the RBF-PLS model, the error is less than 2%, and in the

500–2500 ppm·m range in particular, the error is smaller than

0.5%.

4.3. CO simulation and comparison with measured spec-

tra. Then, in a similar manner, CO models at 4 cm−1 reso-

lution were created. In this case, the errors for the 270–470 K

(Fig. 15) temperature range were two times larger than those

for the narrower 370–470 K range model (Fig. 16). The PLS

models are noticeably better than the RBF-PLS models.

Fig. 17. Comparison of the measured [49] and calculated spectra for

concentration retrieved from the PLS 370–470 K model

Literature reports about practical measurements in indus-

trial environments where the temperature changes are rare.

The same is true about the ability to produce these condi-

tions in the laboratory. Such measurements require special

equipment [47] and can be used to confirm the accuracy of

synthetic spectra modelling [48]. The CO concentration was

determined using measured spectrum [49] for the PLS 370–

470 K model. The spectra are compared in Fig. 17. The given

concentration values is 19200 ppm·m for the 180˚C tempera-

ture. The calculated concentration is 18600 ppm·m with 3.1%

error.

5. Conclusions

Most of the work to determine gas concentrations under vary-

ing conditions attempts to build a direct model and use iter-

ative methods. Inverse models for such cases are created for

typical average conditions. The maximum error, which may

arise from changes in temperature, is only estimated in some

cases.

In this article, simulations at small resolutions between

0.5 and 4 cm−1 and 25 cm−1 resolution for SNB were per-

formed. If the model is built for the specific conditions, the

typical error due to temperature effects is 5% at 10 K. The

resolution has a greater effect on the temperature influence for

the PLS models than for the RBF-PLS models. Temperature

has a greater effect on smaller gas concentrations. Therefore,

it appears advisable to build separate models for small and

large concentration ranges. A universal, temperature-robust

model can be built for a specific temperature range. If chosen

incorrectly, the model will not be able to reduce the effects

of temperature below a certain error level.
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