Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper shows that imaging and analysis of morphological features of the surface of modern structured abrasives in the pre-machining state can be carried out by means of electron microscopy supported by image processing and analysis techniques. The acquisition of SEM micrographs for active surfaces of the four (A6, A30, A65, A160 grades) monolayer abrasive discs 237AA (3M) with Trizact™ abrasive grains was carried out by the use of Quanta 200 Mark II (FEI Company) high-resolution scanning electron microscope. Visual analysis allowed for the observation of abrasive grains mainly in terms of the occurrence on their surface of various defects resulting from the technology of their production. For a parametric analysis, the authors used the Fiji 1.51s software (J. Schindelin et al.) which, in turn, made it possible to determine the values of the basic geometrical parameters characterizing the abrasive grains in the selected area of the active surface of assessed abrasive tool. The observation and measurement instruments used in the experimental studies described in this work and the proposed methodology may present an interesting alternative approach to the assessment of the surface morphology of advanced structured abrasives.
Czasopismo
Rocznik
Tom
Strony
17--26
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Production Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
autor
- Department of Engineering and Technology Management, Technical University of Cluj Napoca, North University Center of Baia Mare, Dr. Victor Babes 62A, 430083, Baia Mare, Romania
Bibliografia
- 1. Cibo (2010). Trizact™ microreplication. Tildonk.
- 2. 3M (2015). Trizact™ structured abrasives. Product application guide. Manchester.
- 3. Evans C.J., Bryan J.B. (1999). “Structured”, “textured” or “engineered” surfaces. CIRP Annals-Manufacturing Technology, Vol. 48, No. 2, pp. 541-556.
- 4. Fletcher T., Gobena F., Romero V. (2005). Diamond fixed abrasive lapping of brittle substrates. Industrial Diamond Review, No. 1. pp. 1-3.
- 5. Eleková L., Lipa Z. (2009). Comparison of conventional and structured abrasives. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Vol. 18, No. 27, pp. 21-28.
- 6. Goossens F., Cherif M., Cahuc, O. (2015). Characterisation of polishing 316l stainless steel with structured abrasive belts [in] Design and Modeling of Mechanical Systems-II – Proceedings of the Sixth Conference on Design and Modeling of Mechanical Systems, CMSM'2015, March 23-25, Hammamet, Tunisia (Chouchane M., Fakhfakh T., Daly, H.B. Aifaoui, N., Chaari F., Eds.), pp. 339-348. Springer, Heidelberg.
- 7. Zaborski S., Pszczołowski W. (2006). Selected problems in evaluating topography of coated abrasives. Archives of Civil and Mechanical Engineering, Vol. 6, No. 3, pp. 29-36.
- 8. Fletcher T., Gobena F.T., Romero V., Sventek B., Schoenhofen W. (2005). Conditioning method development for 3M™ Trizact™ Diamond tile fixed abrasives used in the finishing of brittle substrates; Technical digest. Proceedings of the SPIE, Vol. TD03, pp. 38-40.
- 9. Hazel B., Bedwani J.L., Laroche Y., Lavallé E., Mongenot P., Bédard T.L., Lavoie L., Gagné J.L. (2012). Robotic refurbishment of a spherical valve. Proceedings of the IEEE 2nd International Conference Applied Robotics for the Power Industry (CARPI), ETH Zurich, Switzerland, September 11-13, 2012, pp. 33-38.
- 10. Yang B-S., Tsai H-H. (2014). Surface roughness on metal powder injection moulding AISI 316L stainless steel by abrasive belt grinding. International Journal of Engineering and Applied Sciences, Vol. 5, No. 5, pp. 39-43.
- 11. Cho B-J., Kim H-M., Manivannan R., Moon D-J., Park J-G. (2013). On the mechanism of material removal by fixed abrasive lapping of various glass substrates. Wear, Vol. 302, No. 1, pp. 1334-1339.
- 12. Kim H.M., Manivannan R., Moon D.J., Kwon T.Y., Noh J.H., Park J.G. (2012). Evaluation of glass lapping using fixed abrasive pad. Proceedings of the IEEE International Conference on Planarization/CMP Technology (ICPT 2012), pp. 1-6.
- 13. Marino A.E., Arrasmith S.R., Gregg L.L., Jacobs S.D., Chen G., Duc Y. (2001). Durable phosphate glasses with lower transition temperatures. Journal of Non-Crystalline Solids, Vol. 289, No. 1, pp. 37-41.
- 14. Johnson J.B., Kim D.W., Parks R.E., Burge J.H. (2011). New approach for pre-polish grinding with low subsurface damage. Proceedings of the SPIE, Vol. 8126, pp. 81261E-1.
- 15. Axinte D.A., Kritmanorot M., Axinte M., Gindy N.N.Z. (2005). Investigations on belt polishing of heat-resistant titanium alloys. Journal of Materials Processing Technology, Vol 166, No. 3, pp. 398-404.
- 16. Axinte D.A., Kwong J., Kong M.C. (2009). Workpiece surface integrity of Ti-6-4 heat-resistant alloy when employing different polishing methods. Journal of Materials Processing Technology, Vol. 209, No. 4, pp. 1843-1852.
- 17. Na T.K., Zheng L.B. (2011). Finishing of display glass for mobile electronics using 4S-4μ m 3M™Trizact™ diamond tile abrasive pads. Key Engineering Materials, Vol. 487, pp. 263-267.
- 18. Zheng L., Fletcher T., Na T.K., Sventek B., Romero V., Lugg P.S., Kim D. (2010). Finishing of display glass for mobile electronics using 3M™ Trizact™ diamond tile abrasive pads. Proceedings of the SPIE, Vol. 7655, pp. 76550L-1.
- 19. Zheng L., Na T.K. (2012). Lapping application research for touch screen glass using 3M™ fine grade Trizact™ diamond tile. Proceedings of the SPIE, Vol. 8416, pp. 84160A-1.
- 20. Johnson J.B., Parks R.E., Burge J.H. (2012). Surface stresses of mixed-mode grinding materials on borosilicate glass. Applied Optics, Vol. 51, No. 18, pp. 4151-4156.
- 21. Kapłonek W., Ungureanu M., Nadolny K., Sutowski P. (2017). Stylus profilometry in surface roughness measurements of the vertical conical mixing unit used in a food industry. Journal of Mechanical Engineering, Vol. 47, No. 1, pp. 1-8.
- 22. Kapłonek W., Nadolny K., Królczyk G.M. (2016). The use of focus -variation microscopy for the assessment of active surfaces of a new generation of coated abrasive tools. Measurement Science Review, Vol. 16, No. 2, pp. 42-53.
- 23. Mahmoud T., Tamaki J., Yan J. (2003). Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope. Key Engineering Materials, Vol. 238-239, pp. 131-136.
- 24. Kapłonek W., Nadolny K. (2013). Assessment of the grinding wheel active surface condition using SEM and image analysis techniques. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 35, No. 3, pp. 207-215.
- 25. Borkowski P., Borkowski J., Woźniak D., Maranda A. (2008). Examination of high-pressure water jet usability for high explosives (HE) washing out from artillery ammunition. Central European Journal of Energetic Materials, Vol. 5, No. 2, pp. 21-35.
- 26. Kapłonek W., Nadolny K., Baran J., Królczyk G.M. (2016). Stereometric characteristics of condition of active surface of the abrasive discs with Trizact™ grains after the grinding process of steel NC6 by the use of focus-variation microscopy. Mechanik, Vol. 89, No. 8-9, pp. 1102-1103.
- 27. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, Vol. 9, No. 7, pp. 676-682.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19c4a20d-6691-4246-81af-d63f9dd25df1