PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural behavior of composite structural insulated panels with magnesium oxide board facings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include material bimodularity to significantly improve the accuracy of computational results and failure mode predictions. Material model parameters describing the nonlinear range were identified in a joint analysis of laboratory tests and their numerical simulations performed on CSIP beams of three different lengths subjected to three- and four-point bending. The model was validated by confronting computational results with experimental results for natural scale panels; a good correlation between the two results proved that the proposed model could effectively support the CSIP design process.
Rocznik
Strony
82--102
Opis fizyczny
Bibliogr. 44 poz., fot., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology, Gdańsk, Poland
  • Gdańsk University of Technology, Gdańsk, Poland
  • Poznan University of Technology, Poznań, Poland
Bibliografia
  • [1] Kibert CJ. sustainable construction: green building design and delivery. 3rd ed. Hoboken: Wiley; 2013.
  • [2] Pečur IB, Milovanović B, Carević I, Alagušić M. Precast sandwich panel-innovative way of construction. In: Proc 10th CCC Congr Lib 2014. Liberec; 2014. p. 1–12.
  • [3] Lange J, von der Heyden A, Grimm S. Sandwich panels in buildings: Core, structure and design. Adv Eng Mater Struct Syst Innov Mech Appl [Internet]. 2019. https ://doi.org/10.1201/97804 29426506-157.
  • [4] Smith RE. Prefab architecture: a guide to modular design and construction. Hoboken: Wiley; 2010.
  • [5] Chróścielewski J, Kreja I, Sabik A, Sobczyk B, Witkowski W. Failure analysis of footbridge made of composite materials. Shell Struct Theory Appl. 2013;3:389–92.
  • [6] Chróścielewski J, Ferenc T, Mikulski T, Miśkiewicz M, Pyrzowski Ł. Numerical modeling and experimental validation of full-scale segment to support design of novel GFRP foot-bridge. Compos Struct [Internet]. 2019;213:299–307. https ://doi.org/10.1016/j.comps truct .2019.01.089.
  • [7] Allen HG. Analysis and Design of Structural Sandwich Panels [Internet]. Neal BG, editor. Pergamon Press; 1969. https ://linkinghub .elsevier.com/retri eve/pii/C2013 00213 42. Accessed 23 Sept 2019.
  • [8] Zenkert D. An introduction to sandwich construction. London: EMAS Publishing; 1995.
  • [9] Studziński R, Pozorski Z, Garstecki A. Optimal design of sandwich panels with a soft core. J Theor Appl Mech [Internet]. 2009;47:685–99. http://www.ptmts.org.pl/jtam/index.php/jtam/artic le/view/v47n3 p685. Accessed 23 Sept 2019.
  • [10] Padmanabhan K. Strength-based design optimization studies on rigid polyurethane foam core-glass and carbon-glass fabric face sheet/epoxy matrix sandwich composites. Mech Adv Mater Struct. 2014;21:191–6.
  • [11] Kermani A. Performance of structural insulated panels. Proc Inst Civ Eng Struct Build [Internet]. 2006;159:13–9. https ://doi.org/10.1680/stbu.2006.159.1.13.
  • [12] Kayello A, Ge H, Athienitis A, Rao J. Experimental study of thermal and airtightness performance of structural insulated panel joints in cold climates. Build Environ [Internet]. 2017;115:345–57. https ://doi.org/10.1016/j.buildenv.2017.01.031.
  • [13] Chen W, Hao H, Meng Q. Experimental study of steel wire mesh reinforced structural insulated panels against windborne debris impact. In: Mech Struct Mater Adv Chall-Proc 24th Australas Conf Mech Struct Mater ACMSM24 2016. 2017;571–6.
  • [14] Mousa MA, Uddin N. Structural behavior and modeling of full-scale composite structural insulated wall panels. Eng Struct [Internet]. 2012;41:320–34. https ://doi.org/10.1016/j.engstruct.2012.03.028.
  • [15] Uddin N, Vaidya A, Vaidya U, Pillay S. Thermoplastic composite structural insulated panels (CSIPs) for modular panelized construction. Dev Fiber-Reinforced Polym Compos Civ Eng [Internet]. Elsevier; 2013. p. 302–16. https ://linki nghub .elsev ier.com/retri eve/pii/B9780 85709 23425 00129 . Accessed 23 Sept 2019.
  • [16] Mohamed M, Hussein R, Abutunis A, Huo Z, Chandrashekhara K, Sneed LH. Manufacturing and evaluation of polyurethane composite structural insulated panels. J Sandw Struct Mater. 2016;18:769–89.
  • [17] El-Gammal MA, El-alfy AMH, Mohamed NM. Using magnesium oxide wallboard as an alternative building façade cladding material in modern cairo buildings. J Appl Sci Res [Inter-net]. 2012;8:2024–32. http://www.aensi web.com/old/jasr/jasr/2012/2024-2032.pdf. Accessed 23 Sept 2019.
  • [18] Manalo A. Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and Magnesium Oxide board. Constr Build Mater [Internet]. 2013;41:642–53. https ://doi.org/10.1002/app.47529.
  • [19] Ramli Sulong NH, Mustapa SAS, Abdul Rashid MK. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J Appl Polym Sci [Internet]. 2019;47529:47529. https ://doi.org/10.1002/app.47529.
  • [20] Carlsson LA, Kardomateas GA. Structural and failure mechanics of sandwich composites. Dordrecht: Springer Netherlands; 2011. https ://doi.org/10.1007/978-1-4020-3225-7.
  • [21] Reddy JN, Arciniega RA. Shear deformation plate and shell theories: from Stavsky to present. Mech Adv Mater Struct. 2004;11:535–82.
  • [22] Carrera E, Brischetto S. A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Appl Mech Rev [Internet]. 2009;62:1–17. https ://asmedigita lcoll ection.asme.org/appli edmec hanic srevi ews/artic le/doi/10.1115/1.30138 24/44638 3/A-Survey-With-Numerical-Assessment -of-Classical. Accessed 24 Sept 2019.
  • [23] Gosowski B, Gosowski M. Distributional solutions of bending problems for continuous sandwich panels with thin facings. Arch Civ Mech Eng [Internet]. 2012;12:13–22. https ://linki nghub .elsevier.com/retri eve/pii/S1644 966512000040. Accessed 24 Sept 2019.
  • [24] Rezvani SS, Kiasat MS. Analytical and experimental investigation on the free vibration of a floating composite sandwich plate having viscoelastic core. Arch Civ Mech Eng [Internet]. Polskie Towarzystwo Hematologów i Transfuzjologów, Instytut Hematologii i Transfuzjologii. 2018;18:1241–58. https ://doi.org/10.1016/j.acme.2018.03.006.
  • [25] Akour S, Maaitah H. Sandwich panel behavior for core loading beyond the yield limit. Mod Appl Sci [Internet]. 2018;12:117. http://www.ccsen et.org/journ al/index .php/mas/artic le/view/73157 . Accessed 24 Sept 2019.
  • [26] Labans E, Kalnins K, Bisagni C. Flexural behavior of sandwich panels with cellular wood, plywood stiffener/foam and thermo-plastic composite core. J Sandw Struct Mater. 2019;21:784–805.
  • [27] Studziński R, Pozorski Z. Experimental and numerical analysis of sandwich panels with hybrid core. J Sandw Struct Mater [Internet]. 2018;20:271–86. https ://doi.org/10.1177/10996 36216 646789.
  • [28] Pozorska J, Pozorski Z. Analysis of the failure mechanism of the sandwich panel at the supports. Proc Eng [Internet]. 2017;177:168–74. https ://doi.org/10.1016/j.proen g.2017.02.213.
  • [29] Chuda-Kowalska M. Effect of foam’s heterogeneity on the behavior of sandwich panels. Civ Environ Eng Reports [Internet]. 2019;29:97–111. https ://ceer.com.pl/resources/html/artic le/details?id=19553 2.
  • [30] Chen W, Hao H. Experimental and numerical study of composite lightweight structural insulated panel with expanded polystyrene core against windborne debris impacts. Mater Des [Internet]. 2014;60:409–23. https ://doi.org/10.1016/j.matde s.2014.04.038.
  • [31] Pawlus D. Critical loads calculations of annular three-layered plates with soft elastic or viscoelastic core. Arch Civ Mech Eng [Internet]. 2011;11:993–1009. https ://linki nghub .elsevier.com/retri eve/pii/S1644 96651 26009 10. Accessed 26 Sept 2019.
  • [32] Borsellino C, Calabrese L, Valenza A. Experimental and numerical evaluation of sandwich composite structures. Compos Sci Technol [Internet]. 2004;64:1709–15. https ://linki nghub .elsevier.com/retri eve/pii/S0266353804000119. Accessed 26 Sept 2019.
  • [33] Smakosz Ł, Tejchman J. Evaluation of strength, deformability and failure mode of composite structural insulated panels. Mater Des [Internet]. 2014;54:1068–82. https ://doi.org/10.1016/j.matdes.2013.09.032.
  • [34] Smakosz Ł. Experimental and numerical analysis of sandwich panels with magnesium-oxide board facings and an expanded polystyrene core (PhD thesis, in Polish). PhD thesis. Gdańsk University of Technology; 2017.
  • [35] Smakosz Ł, Kreja I. Failure mode prediction for composite structural insulated panels with MgO board facings. AIP Conf Proc [Internet]. 2018. https ://doi.org/10.1063/1.50190 58.
  • [36] Mills NJ. Polymer Foams Handbook [Internet]. Butterworth-Heinemann. Elsevier; 2007. https ://linki nghub .elsevier.com/retrieve/pii/B9780 75068 0691X 50004 . Accessed 26 Sept 2019.
  • [37] Dassault Systèmes Simulia. ABAQUS/CAE User’s Manual. ABAQUS/CAE User’s Man. 2012;1–847.
  • [38] Gnip IJ, Vaitkus SI, Kersulis VI, Veyelis SA. Deformability of expanded polystyrene under short-term compression. Mech Compos Mater [Internet]. 2007;43:433–44. https ://doi.org/10.1007/s1102 9-007-0041-z.
  • [39] Gnip IY, Vejelis S, Kersulis V, Vaitkus S. Deformability and tensile strength of expanded polystyrene under short-term loading. Polym Test [Internet]. 2007;26:886–95. https ://linki nghub .elsevier.com/retri eve/pii/S0142 94180 70009 55. Accessed 26 Sept 2019.
  • [40] Edo. Expanded polystyrene construction method. Tokyo: Riko Tosho Publishers; 1992.
  • [41] Zeng X, Yu H, Wu C. A mix design and strength analysis of basic magnesium sulphate cement concrete. Adv Civ Eng Build Mater IV [Internet]. 2015. https ://doi.org/10.1201/b1841 5-18.
  • [42] Tejchman J, Bobiński J. Continuous and discontinuous modelling of fracture in concrete using FEM [Internet]. Berlin: Springer; 2013. https ://doi.org/10.1007/978-3-642-28463 -2.
  • [43] Padade AH, Mandal JN. Behavior of expanded polystyrene (EPS) geofoam under triaxial loading conditions. Electron J Geotech Eng. 2012;17S:2542–53.
  • [44] Montgomery DC, Runger GC. Applied statistics and probability for engineers. 3rd ed. Hoboken: Wiley; 2003.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19c0f263-fbd0-4d99-abc3-f19b62f1d5a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.