PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of working liquid flow in a hydrostatic line with the use of frequency characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the little described problems in hydrostatic drives is the fast changing runs in the hydraulic line of this drive affecting the nature of the formation and intensity of pressure pulsation and flow rate occurring in the drive. Pressure pulsation and flow rate are the cause ofthe unstable operation of servos, delays in the control system and other harmful phenomena. The article presents a flow model in a hydrostatic drive line based on fluid continuity equations (mass conservation), maintaining the amount of Navier-Stokes motion in the direction of flow (x axis), energy conservation (liquid state). The movement of liquids in a hydrostatic line is described by partial differential equations of the hyperbolic type, so modeling takes into account the wave phenomena occurring in the line. The in hydrostatic line was treated as a cross with two inputs and two outputs, characterized by a specific transmittance matrix. The product approximation was used to solve the wave equations. An example of the use of general equations is presented for the analysis of a miniaturized hydrostatic drive line fed from a constant pressure source and terminated by a servo mechanism.
Rocznik
Strony
949--956
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warsaw, Poland
  • Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warsaw, Poland
Bibliografia
  • [1] T.M. Baszta, Calculations and designs of aircraft air defense devices, State Scientific and Technical Publishing House, Moskwa, 1961.
  • [2] D. Lovrec, V. Tic, and T. Tasner, “Dynamic behaviour of different hydraulic drive concepts – comparison and limits”, Int. J. Simul. Model. 16(3), 448–457 (2017).
  • [3] W. Kollek et al., Basics of designing, modelling, operating microhydraulic elements and systems, Wroclaw University of Technology, Wrocław, 2011.
  • [4] M. Gullion, Theory and calculations of hydraulic systems, Scientific and Technical Publishers, Warszawa, 1966.
  • [5] Y. Lu, X. Su, and J. Li, “A topology-alterative two-phase flow solver and its validation for a dynamic hydraulic discharge process”, J. Hydraul. Res. 57(5), 607–622 (2019).
  • [6] Z. Zarzycki and S. Kudźma, “Computation of transient turbulent flow of liquid in pipe using unsteady friction formula”, Transactions of the Institute of Fluid – Flow Machinery 116, 27–42 (2005).
  • [7] L. Li, H. Huang, F. Zhao, M. J. Triebe, and Z. Liu, “Analysis of a novel energy-efficient system with double-actuator for hydraulic press”, Mechatronics 47, 77–87 (2017).
  • [8] Z.C. Zhang, H.X. Chen, Z. Ma, J.W. He, H. Liu, and C. Liu, “Research on Improving the Dynamic Performance of Centrifugal Pumps With Twisted Gap Drainage Blades”, J. Fluids Eng. 141 (9), 3–18 (2019).
  • [9] D.G. German, J.M. Reese, and Y.L. Zhang, “Vibration of a flexible pipe conveying viscous pulsating fluid flow”, J. Sound Vibr. 230 (2), 365–387 (2000).
  • [10] Z. Kudźma, Damping pressure pulsations and sound in transiet and determined states of hydraulic systems, Wroclaw University of Technology, Wrocław, 2012.
  • [11] Z. Wang, Z. Qian, J. Lu and, P. Wu, “Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump”, Energy 170, 212–227 (2019).
  • [12] M. Stosiak, Identification of the impact of vibrations and the method of their mitigation at selected hydraulic valves, Wroclaw University of Technology, Wrocław, 2015.
  • [13] L. Grinis, V. Haslavsky, and U. Tzadka, “Self-excited vibration in hydraulic ball check valve”, World Academy of Science Engineering and Technology 6, 1041–1046 (2012).
  • [14] A. Kačeniauskas, “Development of efficient interface sharpening procedure for viscous incompressible flows”, Informatica 19, 487–504 (2008).
  • [15] P.A. Laski, “Fractional-order feedback control of a pneumatic servo-drive”, Bull. Pol. Ac.: Tech. 67 (2), 53–59 (2019).
  • [16] L. Ge, L. Quan, X. Zhang, B. Zhao, and J. Yang, “Efficiency improvement and evaluation of electric hydraulic excavator with speed and displacement variable pump”, Energy Conv. Manag. 150, 62–71 (2017).
  • [17] L. Wang, F. Wang, and X. Lei, “Investigation on friction models for simulation of pipeline filling transients”, J. Hydraul. Res. 56 (6), 888–895 (2018).
  • [18] L. Ułanowicz, “Dynamic properties of a hydraulic system as a impedance loaded line”, Pneumatics Industrial Compressed Air Systems 4 (73), 30–33 (2009).
  • [19] S. Błoński, A. Pręgowska, T. Michałek, and J. Szczepański, “The use of Lempel-Ziv complexity to analyze turbulence and flow randomness based on velocity fluctuations”, Bull. Pol. Ac.: Tech. 67 (5), 957–962 (2019).
  • [20] M. Vašina, L. Hružík, and A. Bureček, “Energy and Dynamic Properties of Hydraulic Systems”, Tehnički Vjesnik 25 (2), 382–390 (2018).
  • [21] E. Stupak, R. Kačianauskas, A. Kačeniauskas, V. Starikovičius, A. Maknickas, R. Pacevič, G. Davidavičius, and A. Aidietis, “The geometric model-based patient-specific simulations of turbulent aortic valve floks”, Arch. Mech. 69 (4–5), 317–345 (2017).
  • [22] H. Cormen, E. Leiserson and L. Rivest, Introduction to algorithms, Scientific and Technical Publishers, Warszawa, 2000.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19bc1015-0123-4420-b4c6-85f969129eae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.