PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of heat treatment and cooling rate on microstructure and properties of T92 welded joint

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of heat treatment and cooling rate on the microstructure and properties of T92 welded joints were studied. Under the same tempering holding time, the diffusion ability in the deposited metal increased as the tempering temperature increased. The phase-change temperature was lower than the AC1 points. In the 5-20s range of t8/5, the deposited metal toughness decreased as the cooling rate increased. When the t8/5 was equal to 70s, the toughness increased and the hardness decreased. The higher heat input induced coarse grain tendency. The lower welding heat input should be used in conjunction with the reasonable post-weld heat treatment.
Wydawca
Rocznik
Strony
124--139
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Welding Institute, Ceneral Iron and Steel Research Institute, Beijing 100081, China
autor
  • SPIC Yunnan International Power Investment Co., Ltd., Kunming 650228, China
autor
  • Welding Institute, Ceneral Iron and Steel Research Institute, Beijing 100081, China
autor
  • Institute of New Energy Technology, State Power Investment Corporation Research Institute, Co. Ltd., Beijing 102206, China
Bibliografia
  • [1] Viswanathan R, Henry JF, Tanzosh J, Stanko G, Shingledecker J, Vitalis B, Purgert R. U.S. program on materials technology for ultra-supercritical coal power plants[J]. J. Mater. Eng. Perform., 2005, 14(3):281-292..DOI: 10.1361/10599490524039.
  • [2] Li S, Hu L, Dai PY, Bi T, Deng D. Influence of the groove shape on welding residual stresses in P92/SUS304 dissimilar metal butt-welded joints. J Manuf Process, 2021, 66: 376-386. DOI: 10.1016/j.jmapro.2021.04.030.
  • [3] Viswanathan R, Sarver J, Tanzosh JM. Boiler materials for ultra-supercritical coal power plants—Steamside oxidation[J]. J. Mater. Eng. Perform., 2006, 15(3):255-274. DOI:10.1361/105994906X108756.
  • [4] Dai Z, Qi YC, Zhang X, Wu ZQ, Ma CY, Yin Q. Microstructure and properties of multipass and wire welded joints on Super304H steel. Mater Lett, 2020, 270: 127698. DOI: 10.1016/j.matlet.2020.127698.
  • [5] Ennis PJ, Czyrska-Filemonowicz A. Recent advances in creep resistant steels for power plant applications. Sadhana, 2003, 28(3): 709-730. DOI: 10.1007/BF02706455.
  • [6] Tan SP, Wang ZH, Cheng SC, Liu ZD, Han JC, Fu WT. Hot deformation behavior of Super304H austenitic heatresistant steel. Int J Miner Metall Mater, 2010, 17(2): 167-172. DOI: CNKI:SUN:BJKY.0.2010-02-009.
  • [7] Dak G, Pandey C. Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel. Int J Press Ves Pip, 2021, 194(Part A): 104536. DOI: 10.1016/j.ijpvp.2021.104536.
  • [8] Mitsubishi Jukogyo KK. High strength, heat resisting steel welding electrode for welding boilers for power generation and pressurised chemical containers-consists of carbon, silicon, manganese, phosphorous, sulphur, chromium, nickel, molybdenum, vanadium, tungsten, niobium, rhenium, aluminium, boron and nitrogen at predetermined weight percentage. Japanese, 3426880-B2. 2003-07-14.
  • [9] Kobe Steel Ltd. Weld metal for high chromium ferritic heat-resistant steel used in pipes of boilers in electric power generation plant-has predetermined composition containing fixed ratio of niobium against vanadium in sodium chloride type carbonitride precipitated after stress relaxation process after welding. Japanese, 3527640-B2. 2004-05-17.
  • [10] Coleman KK, Gandy DW, Viswanathan R, Newell Jr, William F. Weld filler composition for use in welding steel pieces with different alloy content, such as low alloy ferritic steel and high alloy ferritic steel, comprises nickel, iron, chromium, niobium, carbon, manganese, molybdenum, and silicon. United States, 2005247763-A1. 2005-11-10.
  • [11] Kobe Steel Ltd. Wire for gas shielded arc welding of low-alloy heat-resistant steel, has flux coating which contains sodium, potassium and lithium compounds, titanium and metal fluoride. Japanese, 3815984-B2. 2006-08-30.
  • [12] Zhao L, Liang J, Zhong QP, Yang C, Sun B, Du JF. Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe. Adv Eng Softw, 2014, 68: 70-79. DOI: 10.1016/j.advengsoft.2013.12.004.
  • [13] Wu ZQ, Zhang X, Song XG, Ma CY, Qi YC, Chen X. Microstructure and properties of welded joint for T92 ferritic heat-resistant steel. J Alloys Compd, 2017: 140523. Doi.org/10.1016/j.jallcom.2017.01.156.
  • [14] Wang X, Wang X, Niu XG, Xiao DM, Hu XL. Application of nonlinear ultrasonic technique to characterize the creep damage in ASME T92 steel welded joints. NDT & E Int, 2018, 98: 8-16. DOI: 10.1016/j.ndteint.2018.04.006.
  • [15] Wang X, Wang X, Zhang YL, Wang C, Li Y, Huang QS. Microstructure and creep fracture behavior in HR3C/T92 dissimilar steel welds[J]. Mater Sci Eng, 2021, 799: 140128. DOI: 10.1016/j.msea.2020.140128.
  • [16] Zhang X, Qi YC. Comparative study of different welding wires on T92 welding joints. Philos Mag Lett, 2018, 9(4): 133-138. DOI: 10.1080/09500839.2018.1489151.
  • [17] Shanmugarajan B, Sathiya P, Buvanashekaran G. Mechanical and metallurgical properties of autogenous laser welded P92 material. J Manuf Process, 2016, 24(1): 11-18. DOI: 10.1016/j.jmapro.2016.07.003.
  • [18] Sklenička V, Kuchařová K, Svobodová M, Kvapilová M, Král P, Horváth L. Creep properties in similar weld joint of a thick-walled P92 steel pipe. Mater Charact, 2016, 119: 1-12. DOI: 10.1016/j.matchar.2016.06.033.
  • [19] Sirohi S, Pandey C, Goyal A. Role of heattreatment and filler on structure-property relationship of dissimilar welded joint of P22 and F69 steel. Fusion Eng Des, 2020, 159: 111935. DOI: 10.1016/j.fusengdes.2020.111935.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19b67a15-c106-4c18-9928-636b73e1e215
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.