PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Allelopathic Effects of Wood Small-Reed (Calamagrostis epigejos) on Germination and Growth of Selected Grassland Species

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of allelopathy in the displacement of given meadow species by wood small-reed (Calamagrostis epigejos) is not well recognized. The aim of this study was to evaluate and compare the influence of volatile and aqueous extracts from C. epigejos on initial recruitment of typical mesic meadow species (Daucus carota, Rumex acetosa, Festuca pratensis and Dactylis glomerata). The activity of allelochemicals contained within above-ground biomass, below-ground biomass and necromass of the donor plant was estimated. Using gas chromatography-mass spectrometry technique led to the identification of 19 compounds (alcohols, aldehydes, ketones and esters) in C. epigejos volatile extracts. Aliphatic alcohols were the main group of identified chemicals, including (Z)-3-hexen-1-ol acetate. The laboratory tests showed a significant inhibitory influence of volatile C. epigejos extracts on the growth of D. glomerata, D. carota and R. acetosa roots. The influence of aqueous C. epigejos extracts on selected meadow species was less evident. Only the seeds of D. glomerata and F. pratensis were found to be susceptible to water extracts of above-ground C. epigejos biomass. The seed germination was stimulated by the extracts at low concentrations but inhibited at higher concentrations. Among the tested plants only the growth of F. pratensis seedlings was inhibited by aqueous extracts obtained from all examined C. epigejos parts. In regarding to the other test species the effect of C. epigejos extracts was neutral or positive. The results suggest that C. epigejos has a allelopathic potential to suppress the growth of co-occurring grassland species.
Rocznik
Strony
122--136
Opis fizyczny
Bibliogr. 51 poz., tab., wykr.
Twórcy
  • Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
  • Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
Bibliografia
  • 1. Aiken S. G., Lefkovitch L. P., Armstrong K. C. 1989 – Calamagrostis epigejos (Poaceae) in North America, especially Ontario – Can. J. Bot. 67: 3205-3218.
  • 2. Bais H. P., Park S-W., Weir T. L., Callaway R. M., Vivanco J. M. 2004 – How plants communicate using the underground information superhighway – Trends Plant Sci. 9: 26-32.
  • 3. Baldwin I. T., Halitschke R., Paschold A., von Dahl C. C., Preston C. A. 2006 – Volatile signaling in plant-plant interactions: “talking trees” in the genomics era – Science, 311: 812-815.
  • 4. Baležentienė L., Šėžienė V. 2010 – Biochemical impact of dominants' extracts of Scots pinewood cuttings on germination – Pol. J. Environ. Stud. 19: 35-42.
  • 5. Barney J. N., Hay A. G., Weston L. A. 2005 – Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris) – J. Chem. Ecol. 31: 247-265.
  • 6. Bączek P., Halarewicz A. 2019 – Effect of black cherry (Prunus serotina) litter extracts on germination and growth of Scots pine (Pinus sylvestris) seedlings – Pol. J. Ecol. 67: 137-147.
  • 7. Blanco J. A. 2007 – The representation of allelopathy in ecosystem-level forest models – Ecol. model. 209: 65-77.
  • 8. Bostan C., Horablaga A., Căluşeru A. L., Rujan C., Cojocariu A., Coman M., Ghica A. 2012 – The influence of the allelophatic interactions between plants – Research Journal of Agricultural Science, 44 (4): 11-17.
  • 9. Callaway R. M. 2002 – The detection of neighbors by plants – Trends Ecol. Evol. 17: 104-105.
  • 10. Callaway R. M., Ridenour W. M., Laboski T., Weiner T., Vivanco J. M. 2005 – Natural selection for resistance to the allelopathic effects of invasive plants – J. Ecol. 93: 576-583.
  • 11. Chapman S. J., Lynch J. M. 1983 – The relative roles of micro-organisms and their metabolites in the phytotoxicity of decomposing plant residues – Plant Soil, 74: 457-459.
  • 12. Ciarka D., Gawronska H., Malecka M., Gawronski S. W. 2009 – Allelopathic potential of sunflower. II. Allelopathic activity of plants compounds released in environment – Allelopathy J. 23: 243-254.
  • 13. Csiszar A., Korda M., Schmidt D., Šporčić D., Suele P., Teleki B., Tiborcz V., Zagyvai G., Bartha D. 2013 – Allelopathic potential of some invasive plant species occurring in Hungary – Allelopathy J. 31: 309-318.
  • 14. Dakshini K. M. M., Foy C. L., Inderjit 1999 – Allelopathy: one component in a multifaceted approach to ecology (In: Principles and practices in plant ecology, Eds: Inderjit, K. M. M. Dakshini, C. L. Foy) – CRC Press, Boca Raton, pp. 2-14.
  • 15. Dell Inc. 2016 – Dell Statistica (data analysis software system), version 13 – software. dell.com.
  • 16. Einhelling F. A. 1995a – Allelopathy: current status and future goals (In: Allelopathy, Organisms, Processes, and Applications. Eds: Inderjit, K. M. M. Dakshini, F. A. Einhellig) – Am. Chem. Soc.Washington, pp. 1-24.
  • 17. Einhelling F. A. 1995b – Mechanism of action of allelochemicals in allelopathy (In: Allelopathy, Organisms, Processes, and Applications. Eds: Inderjit, K. M. M. Dakshini, F. A. Einhellig) – Am. Chem. Soc. Washington, pp. 96-116.
  • 18. Facelli J. M., Pickett S. T. A. 1991 – Plant litter: its dynamics and effects on plant community structure – Bot. Rev. 57: 1-32.
  • 19. Gloser V. 2002 – Seasonal changes of nitrogen storage compounds in a rhizomatous grass Calamagrostis epigejos – Biol. Plantarum. 45: 563-568.
  • 20. Gloser V., Košvancová M., Gloser J. 2004 – Changes in growth parameters and content of N-storage compounds in roots and rhizomes of Calamagrostis epigejos after repeated defoliation – Biologia, Bratislava 59/Suppl. 13: 179-184.
  • 21. Holub P., Sedláková I., Fiala K., Tůma I., Záhora J., Tesařová M. 2004 – Reasons and consequences of expansion of Calamagrostis epigejos in meadows of the Dyje River floodplain – Verhandlungen der Gesellschaft für Ökologie, 34: 167.
  • 22. Inderjit, Dakshini K. M. M. 1995 – On laboratory bioassays in allelopathy – Bot. Rev. 61: 28-44.
  • 23. Inderjit, Duke S. O. 2003 – Ecophysiological aspects of allelopathy – Planta, 217: 529-539.
  • 24. Kavanová M., Gloser V. 2005 – The use of internal nitrogen stores in the rhizomatous grass Calamagrostis epigejos during regrowth after defoliation – Ann. Bot. 95: 457-463.
  • 25. Klotz S., Kühn I., Durka W. [Hrsg.] 2002. BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland – Schriftenreihe für Vegetationskunde 38. Bonn: Bundesamt für Naturschutz.
  • 26. Kryzeviciene A., Paplauskiene V. 2002 – Allelopathic activity of perennial grasses at different development stages – Zemdirbyste, 4: 179-192.
  • 27. Lehmann C., Rebele F. 2005 – Phenotypic plasticity in Calamagrostis epigejos (Poaceae): response capacities of genotypes from different populations of contrasting habitats to a range of soil fertility – Acta Oecol. 28: 127-140.
  • 28. Lipińska H., Harkot W. 2000 – [Allelopathic influence of dead leaves of Poa pratensis L. on initial growth and development of Dactylis glomerata L., Festuca pratensis Huds. and Phleum pretense L.] – Grassland Science in Poland, 3: 95-104 (in Polish with English summary).
  • 29. Lovett J. V., Ryuntyu M. R., Liu D. L. 1989 – Allelopathy, chemical communication and plant defense – J. Chem. Ecol. 15: 1193-1202.
  • 30. Matuszkiewicz, W. 2012 –[Guide to the Determination of Polish Plant Communities] – Warszawa, Scientific Publishing PWN (in Polish).
  • 31. Oberdorfer E. 2005 – Pflanzensoziologische Exkursionsflora: Fur Deutschland und angrenzende Gebiete 8 Auflage.
  • 32. Perry L. G., Thelen G. C., Ridenour W. M., Weir T. L., Callaway R. M, Paschke M. W., Vivanco J. M. 2005 – Dual role for an allelochemical: catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment – J. Ecol 93: 1126-1135.
  • 33. Pickett J. A., Rasmussen H. B., Woodcock C. M., Matthest M., Napiert J. A. 2003 – Plant stress signalling: understanding and exploiting plant-plant interactions – Biochem. Soc. T. 31: 123-127.
  • 34. Prati D., Bossdorf O. 2004 – Allelopathic inhibition of germination by Allaria petiolata (Brassicaceae) – Am. J. Bot. 91 (200): 285-288.
  • 35. Pruchniewicz D. 2017 – Abandonment of traditionally managed mesic mountain meadows affects plant species composition and diversity – Basic Appl. Ecol. 20: 10-18.
  • 36. Pruchniewicz D., Żołnierz L. 2014 – The influence of environmental factors and management methods on the vegetation of mesic grasslands in a central European mountain range – Flora, 209: 687-692.
  • 37. Pruchniewicz D., Żołnierz L. 2017a – The influence of Calamagrostis epigejos expansion on the species composition and soil properties of mountain mesic meadows – Acta Soc. Bot. Pol. 86 (1): 3516.
  • 38. Pruchniewicz D., Żołnierz L. 2017b – Relationship between litter produced by Calamagrostis epigejos and seedling recruitment of mesic meadow species in mountain conditions – Community Ecol. 18: 149-156.
  • 39. Qasem J. R. 1999 – Biological activity of corn buttercup (Ranunculus arvensis L.) (In: Recent Advances in Allelopathy vol. 1. A Science for the Future, Eds: F. A. Macias et al.) – Servicio De Publicaciones-Universidad de Cadiz, Cadiz, Spain, pp. 287-300.
  • 40. Rebele F. Lehmann C. 2001 – Biological Flora of Central Europe: Calamagrostis epigejos (L.) Roth. – Flora, 196: 325-344.
  • 41. Renne I. J., Rios B. G., Fehmi J. S., Tracy B. F. 2004 – Low allelopathic potential of invasive forage grass on native grassland plants: a cause for encouragement? – Basic Appl. Ecol. 5: 261-269.
  • 42. Rice E. L. 1984 – Allelopathy, second ed. Academic Press, Orlando.
  • 43. Rothmaler W. 2002 – Exkursionsflora von Deutschland. Gefäβpflanzen: Kritischer Band. IV. ed. Eckehart J. Jäger, Werner K. Spektrum Akademischer Verlag, Auflage: 9.
  • 44. Sedláková I., Fiala K. 2001 – Ecological degradation of alluvial meadows due to expanding Calamagrostis epigejos – Ekológia (Bratislava), 3: 226-333.
  • 45. Somodi I., Virágh K., János P. 2008 – The effect of expansion of the clonal grass Calamagrostis epigejos on the species turnover of a semi-arid grassland – Appl. Veg. Sci. 11: 187-192.
  • 46. Tůma I., Holub P., Fiala K. 2009 – Soil nutrient heterogeneity and competitive ability of three grass species (Festuca ovina, Arrhenatherum elatius and Calamagrostis epigejos) in experimental conditions – Biologia, 64/4: 694-704.
  • 47. van der Berg L. J. L., Tomassen H. B. M., Roelofs J. G. M., Bobbink R. 2005 – Effects of nitrogen enrichment on coastal dune grassland: A mesocosm study – Environ. Pollut. 138: 77-85.
  • 48. Vicherkova M., Phlak F., Konsalova I. 1999 – Allelopathy research in Czech Republic. (In: Allelopathy Update Vol. 1. International status, Ed. S. S. Narwal) – Science Publishers Inc, Enfield, NH, USA, pp. 3-36.
  • 49. Wardle D. A., Nilson M. C., Gallet C., Zackrisson O. 1998 – An ecosystem-level perspective of allelopathy – Biol. Rev. 73: 301-309.
  • 50. Weir T. L. 2007 – The role of allelopathy and mycorrhizal associations in biological invasions – Allelopathy J. 20: 43-50.
  • 51. Zuo Z. J., Zhang R. M., Gao P. J., Wen G. S., Hou P., Gao Y. 2011 – Allelopathic effects of Artemisia frigida Willd. on growth of pasture grasses in Inner Mongolia, China – Biochem. Syst. Ecol. 39: 377-383.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19b182d0-96c0-4289-b0a7-5873dbc7c30b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.