PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remedies to Thermal Radiation in Fused Silica Optical Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During fire incidents, optical fibers located with-in a fire-resistant cable are usually exposed to temperatures of 800◦C to 1000◦C. Hot fibers generate narrowband thermal (incandescent) radiation and collect broadband thermal radiation originating from the heated surroundings. The power of the second component, initially negligible, increases with time due to the rising number of fiber cracks and other defects acting as couplers for external radiation. Thermal radiation may interfere with fiber attenuation measurements performed during a fire test, but is rather unlikely to prevent data transmission with typical GbE and 10 GbE transceivers during a fire. This problem may be remedied by combining the following methods: using single mode fibers instead of multimode fibers, using bandpass filters to block thermal radiation, and selecting proper transmitter power, wavelength and photodetector.
Rocznik
Tom
Strony
88--96
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • National Institute of Telecommunications, Warsaw, Poland
  • National Institute of Telecommunications, Warsaw, Poland
  • National Institute of Telecommunications, Warsaw, Poland
Bibliografia
  • [1] –, EN 50200 , “Method of test for resistance to fire of unprotected small cables for use in emergency circuits”.
  • [2] –, DIN 4102- 12, “Fire behavior of building materials and elements – Part 12: Fire resistance of electric cable systems required to maintain circuit integrity – Requirements and testing”.
  • [3] –, EN 50582 : “Procedure to assess the circuit integrity of optical fibres in a cable under resistance to fire testing”.
  • [4] K. Borzycki, M. Jaworski, and T. Kossek, “Some effects of high temperature in fused silica optical fibers”, J. Telecommunications and Inform. Technol., no. 3, pp. 56– 71, 2021 (DOI:10.26636/jtit.2021.153521).
  • [5] A.H. Rose and T.J. Bruno, “The observation of OH in annealed optical fiber”, J. Non-Cryst. Solids, vol. 231, no. 3, pp. 280– 285, 1998 (DOI:10.1016/S0022-3093(98)00676-0).
  • [6] A.H. Rose, “Devitrification in annealed optical fiber”, J. Lightwave Technol., vol. 15, no. 5, pp. 808– 814, 1997 (DOI:10.1109/50.580819).
  • [7] OFS Fitel datasheet, Fiber- 151, „50 μm graded-index OM 2 – bend-insensitive multimode optical fiber”, 4/2018 (URL:https://fiber-optic-catalog.ofsoptics.com/documents/pdf/Graded-Index-50-BO-MMF-fiber-151-web.pdf).
  • [8] –, ITU-T G.652, “Characteristics of a single-mode optical fibre and cable”, 2016 (URL: https://www.itu.int/rec/T-REC-G.652-201611-I/en).
  • [9] O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica”, J. Non-Crystalline Solids, vol. 203, pp. 19– 26, 1996 (DOI: 10.1016/0022-3093(96)00329-8).
  • [10] –, “Investigation of high temperature silica based fiber optic materials”, Final scientific/technical report, DOE Award no. DE-FE 0027891 . Virginia Polytechnic Institute & State University, 2018 (URL: https://www.osti.gov/servlets/purl/1489125).
  • [11] A. Honda, K. Toh, S. Nagata, B. Tsuchiya, and T. Shikama, “Effect of temperature and irradiation on fused silica optical fiber for temperature measurement”, J. of Nuclear Materials, vol. 367, pp. 1117 –1121, 2007 (DOI: 10.1016/j.jnucmat.2007.03.193).
  • [12] K. Saitoh, Y. Tsuchida, and M. Koshiba, “Bending-insensitive single-mode hole-assisted fibers with reduced splice loss”, Opt. Lett. 30, pp. 1779–1781, 2005 (DOI: 10.1364/OL.30.00177).
  • [13] W. Luo, S. Li, W. Chen, D. Wang, and Q. Mo, “Low-loss bending-insensitive micro-structured optical fiber for FTTH”, Proc. 61-st IWCS, 2012, pp. 454–457 (URL: https://www.yumpu.com/en/document/read/ 30323166/low-loss-bending-insensitive-micro-structured-optical-fiber-for-ftth).
  • [14] M.-J. Li, et al., “Ultra-low bending loss single-mode fiber for FT-TH”, J. Lightwave Technol., vol. 27, no. 3, pp. 376–382, 2009 (DOI:10.1109/JLT.2008.2010413).
  • [15] IEEE Computer Society, IEEE Standard for Ethernet – IEEE Std. 802. 3- 2018 (URL: https://standards.ieee.org/ieee/802. 3/7071/).
  • [16] ISO/IEC 11801, Information technology – Generic cabling for customer premises, 2017 (URL: https://www.iso.org/standard/66182.html).
  • [17] –, EN-IEC 60793- 1-40 , “Optical fibres – Part 1– 40: Attenuation measurement methods”.
  • [18] –, EN 60793 -1-46, “Optical fibres – Part 1–46: Measurement methods and test procedures – Monitoring of changes in optical transmittance”.
  • [19] –, EN-IEC 60794 -1- 20, “Optical fibre cables – Part 1– 20: Generic specification – Basic optical cable test procedures – General and definitions”.
  • [20] –, EN 50582 , “Procedure to assess the circuit integrity of optical fibres in a cable under resistance to fire testing”.
  • [21] –, Recommendation ITU-T G. 657, “Characteristics of a bendingloss insensitive single-mode optical fibre and cable”, 2016 (URL:https://www.itu.int/rec/T-REC-G.657-201611-I/en).
  • [22] –, IEC 60793- 2-10, “Optical fibres – Part 2–10 : Product specifications – Sectional specification for category A1 multimode fibres”.
  • [23] –, EN-IEC 60793-2- 50, “Optical fibres – Part 2–50: Product specifications – Sectional specification for class B single-mode fibres”.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19afe658-b764-4ce5-a7fb-74d1cd41e663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.