PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Depositional architecture of the Upper Cretaceous succession in central Poland (Grudziądz-Polik area) based on regional seismic data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interpretation of the regional high-resolution seismic data of the PolandSPANTM survey in the Grudziądz-Polik area revealed a new depositional architecture of the Upper Cretaceous succession that differs substantially from the previously assumed layer-cake model, commonly applied to Permian-Mesozoic sequences. A previously unrecognized regional unconformity, dividing the Upper Cretaceous succession into two units characterized by very different internal geometries, was identified and mapped. The lower unit, with a generally layer-cake internal pattern, is overlain by an upper unit composed of a regionally low-angle succession that pinches out toward the south. This newly revealed regional pattern remained unrecognized in previous regional compilations based on borehole data, which suggested that a layer-cake depositional architecture prevailed throughout the entire Upper Cretaceous. This new image of Upper Cretaceous depositional patterns has far-reaching consequences for understanding of the evolution of the Polish Basin in the Late Cretaceous, including its subsidence and burial history, deposition, and tectonic development. A re-evaluation of the chronostratigraphy of the Upper Cretaceous of the Polish Basin is needed to temporally constrain the succession of sedimentary and tectonic events revealed here.
Rocznik
Strony
art. no. 21
Opis fizyczny
Bibliogr. 122 poz., rys., wykr.
Twórcy
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warszawa, Poland
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • 1. Abdel-Gawad, G.I., 1986. Maastrichtian non-cephalopod mollusks (Scaphopoda, Gastropoda and Bivalvia) of the Middle Vistula valley, central Poland. Acta Geologica Polonica, 36: 69-224.
  • 2. Ainsworth, B.R., Sanlung, M., Duivenvoorden, S.T.C., 1999. Correlation techniques, perforation strategies, and recovery factors: an in tegrated 3-D reservoir modeling study. Sirikit field, Thailand. AAPG Bulletin, 83: 1535-1551.
  • 3. Allen, P.A., Armitage, J.J., 2012. Cratonic basins. In: Tectonics of Sedimentary Basins: Recent Advances (eds. C. Busby and A.A. Pérez): 602-620. John Wiley and Sons, Chichester.
  • 4. Arfai, J., Lutz, R., Franke, D., Gaedicke, C., Kley, J., 2016. Mass-transport deposits and reservoir quality of Upper Cretaceous Chalk within the German Central Graben, North Sea. International Journal of Earth Sciences, 105: 797-818.
  • 5. Armitage, J.J., Allen, P.A., 2010. Cratonic basins and the long-term subsidence history of continental interiors. Journal of the Geological Society, 167: 61-70.
  • 6. Bac-Moszaszwili, M., Morawska, A., 1975. Tectonic structures in the Cretaceous formations of the Warsaw Basin and their relation to the substratum dislocations (in Polish with English summary). Acta Geologica Polonica, 25: 577-586.
  • 7. Boussaha, M., Thibault, N., Anderskouv, K., Moreau, J., Stemmerik, L., 2017. Controls on upper Campanian-Maastrichtian chalk deposition in the eastern Danish Basin. Sedimentology, 64: 1998-2030.
  • 8. Brett, C.E., 1982. Stratigraphy and facies relationships of Silurian (Wenlockian) Rochester Shale: layer cake geology reinterpreted. AAPG Bulletin, 66: 1165-1165.
  • 9. Brett, C.E., 2000. A slice of the “layer cake”: the paradox of “frosting continuity”. Palaios, 15: 495-498.
  • 10. Brett, C.E., McLaughlin, P.I., Baird, G.C., 2007. Eo-Ulrichian to Neo-Ulrichian views: the renaissance of “layer-cake stratigraiphy”. Stratigraphy. USGS Publications Warehouse, 4: 201-215.
  • 11. Bristow, R., Mortimore, R., Wood, C., 1997. Lithostratigraphy for mapping the Chalk of southern England. Proceedings of the Geologists' Association, 108: 293-315.
  • 12. Burgess, P.M., 2019. Phanerozoic evolution of the sedimentary cover of the North American Craton. In: The Sedimentary Basins of the United States and Canada. Second Edition (ed. A.D. Miall): 39-75. Elsevier, Toronto.
  • 13. Burollet, P.F., 1984. Intracratonic and pericratonic basins in Africa. Sedimentary Geology, 40: 1-11.
  • 14. Catuneanu, O., GalIoway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A., Tucker, M.E., 2011. Sequence stratigraphy: methodology and nomenclature. Newsletters on stratigraphy, 44: 173-245.
  • 15. Central Geological Database. URL: http://baza.pgi.gov.pl/
  • 16. Cieśliński, S., 1959. Commencement of Upper Cretaceous transgression in Poland (without Carpathians and Silesia) (in Polish with English summary). Kwartalnik Geologiczny, 3 (4): 943-964.
  • 17. Cloetingh, S., Van Wees, J.D., 2005. Strength reversal in Europe's intraplate lithosphere: transition from basin inversion to lithospheric folding. Geology, 33: 285-288.
  • 18. Cloetingh, S.A.P.L., Burov, E., Poliakov, A., 1999. Lithosphere folding: primary response to compression? (from central Asia to Paris basin). Tectonics, 18: 1064-1083.
  • 19. Dadlez, R., 1998. Devonian to Cretaceous epicontinental basins in Poland: relationship between their development and structure (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 165: 17-30.
  • 20. Dadlez, R., 2003. Mesozoic thickness pattern in the Mid-Polish Trough. Geological Quarterly, 47 (3): 223-240.
  • 21. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., Van Wees, J.D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195.
  • 22. Dadlez, R., Marek, S., Pokorski, J. eds., 2000. Geological Map of Poland without Cainozoic Deposits, 1:1 000 000. Państwowy Instytut Geologiczny, Warszawa.
  • 23. Daly, M.C., Fuck, R.A., JuliB, J., Macdonald, D.I., Watts, A.B., 2018. Cratonic basin formation: a case study of the Parnaíba Basin of Brazil. Geological Society Special Publications, 472: 1-15.
  • 24. Doornenbal, J.C., Stevenson A.G. eds., 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. Houten.
  • 25. Dubicka, Z., Peryt, D., 2012. Latest Campanian and Maastrichtian palaeoenvironmental changes: implications from an epicontinental sea (SE Poland and western Ukraine). Cretaceous Research, 37: 272-284.
  • 26. Esmerode, E.V., Lykke-Andersen, H., Surlyk, F., 2007. Ridge and valley systems in the Upper Cretaceous chalk of the Danish Basin: contourites in an epeiric sea. Geological Society Special Publications, 276: 265-282.
  • 27. Gale, A.S., Mutterlose, J., Batenburg, S., Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Petrizzo, M.R., 2020. The Cretaceous Period. In: Geologic Time Scale 2020 (eds. F.M. Gradstein, J.G. Ogg, M.D. Schmitz and G.M. Ogg): 1023-1086. Elsevier.
  • 28. Gardner, G.H.F., Gardner, L.W., Gregory, A.R., 1974. Formation velocity and density - the diagnostic basics for stratigraphic traps. Geophysics, 39: 770-780.
  • 29. Gawor-Biedowa, E., 2011. Biostratygrafia kredy górnej i paleocenu dolnego na podstawie otwornic (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 129: 71-73.
  • 30. Gawor-Biedowa, E., 2018a. Biostratygrafia skał kredy górnej na podstawie otwornic (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 148: 101-106.
  • 31. Gawor-Biedowa, E., 2018b. Biostratygrafia utworów górnokredowych i dolnego paleogenu na podstawie otwornic (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 150: 89-93.
  • 32. Gawor-Biedowa, E., 2019. Biostratygrafia utworów paleocenu dolnego i kredy górnej na podstawie otwornic (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 156: 136-139.
  • 33. Gennaro, M., Wonham, J.P., Gawthorpe, R., Sælen, G., 2013. Seismic stratigraphy of the Chalk Group in the Norwegian Central Graben, North Sea. Marine and Petroleum Geology, 45: 236-266.
  • 34. Gjelberg, J., Steel, R., 2012. Depositional model for the Lower Cretaceous Helvetiafjellet Formation on Svalbard - diachronous vs. layer-cake models. Norwegian Journal of Geology, 92: 41-54.
  • 35. Hallam, A., 1985. A review of Mesozoic climates. Journal of the Geological Society, 142: 433-445.
  • 36. Håkansson, E., Bromley, R., Perch-Nielsen, K., 1974. Maastrichtian chalk of north west Europe - a pelagic shelf sediment. IAS Special Publication, 1: 211-233.
  • 37. Hancock, J.M., 1989. Sea-level changes in the British region during the Late Cretaceous. Proceedings of the Geologists' Association, 100: 565-594.
  • 38. Haq, B.U., 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113: 44-58.
  • 39. Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Special Publication, 42: 71-108.
  • 40. Hay, W.W., 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29: 725-753.
  • 41. Hübscher, C., Hseinat, M.A.A., Schneider, M., Betzler, C., 2019. Evolution of contourite systems in the late Cretaceous Chalk Sea along the Tornquist Zone. Sedimentology, 66: 1341-1360.
  • 42. ION Geophysical Company. URL: https://www.iongeo.com/Data_Library.
  • 43. Jarosiński, M., Poprawa, P., Ziegler, P., 2009. Cenozoic dynamic evolution of the Polish Platform. Geological Quarterly, 53 (1): 3-26.
  • 44. Jaskowiak-Schoeneichowa, M., 1979. Stratygrafia, litologia i paleogeografia. Kreda górna (łącznie z albem górnym) (in Polish). Prace Instytutu Geologicznego, 96: 77-89.
  • 45. Jaskowiak-Schoeneichowa, M., Krassowska, A., 1983. Upper Cretaceous (in Polish with English summary). Prace Instytutu Geologicznego, 103: 177-197.
  • 46. Jaskowiak-Schoeneichowa, M., Krassowska, A., 1988. Palaeothickness, lithofacies and palaeotectonic of the epicontinental Upper Cretaceous in Poland (in Polish with English summary). Geological Quarterly, 32 (1): 177-198.
  • 47. Kley, J., Voigt, T., 2008. Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36: 839-842.
  • 48. Kontorovich, A.E., Ershov, S.V., Kazanenkov, V.A., Karogodin, Y.N., Kontorovich, V.A., Lebedeva, N.K., Nikitenko, B.L., Popova, N.I., Shurygin, B.N., 2014. Cretaceous paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics, 55: 582-609.
  • 49. Krassowska, A., 1997. Kreda górna. Sedymentacja, paleogeografia i paleotektonica (in Polish). Prace Państwowego Instytutu Geologiczego, 153: 386-402.
  • 50. Krzywiec, P., 2002. Mid-Polish Trough inversion - seismic examples, main mechanisms and its relationship to the Alpine-Carpathian collision. EGU Stephan Mueller Special Publication Series, 1: 151-165.
  • 51. Krzywiec, P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough - lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-168.
  • 52. Krzywiec, P., 2012. Mesozoic and Cenozoic evolution of salt structures within the Polish basin: an overview. Geological Society Special Publications, 363: 381-394.
  • 53. Krzywiec, P., Stachowska, A., 2016. Late Cretaceous inversion of the NW segment of the Mid-Polish Trough - how marginal troughs were formed, and does it matter at all? Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 167: 107-119.
  • 54. Krzywiec, P., Kramarska, R., Zientara, P., 2003. Strike-slip tectonics within the SW Baltic Sea and its relationship to the inversion of the Mid-Polish Trough - evidence from high-resolution seismic data. Tectonophysics, 373: 93-105.
  • 55. Krzywiec, P., Gutowski, J., Walaszczyk, I., Wróbel, G., Wybraniec, S., 2009. Tectonostratigraphic model of the Late Cretaceous inversion along the Nowe Miasto-Zawichost Fault Zone, SE Mid-Polish Trough. Geological Quarterly, 53 (1): 27-48.
  • 56. Krzywiec, P., Malinowski, M., Mazur, S., Buffenmyer, V., Lewandowski, M., 2014a. Structure and Phanerozoic evolution of the SW edge of the East European Craton in Poland - new insight from high-effort seismic reflection data (project Poland SPAN). Geologia Sudetica, 42: 46-48.
  • 57. Krzywiec, P., Malinowski, M., Lis, P., Buffenmyer, V., Lewandowski, M., 2014b. Lower Paleozoic Basins developed above the East European Craton in Poland: new insight from regional high-effort seismic reflection data. SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna, Austria, 25-27.02: 7.
  • 58. Krzywiec, P., Mazur, S., Gągała, L., Kufrasa, M., Lewandowski, M., Malinowski, M., Buffenmyer, V., 2017a. Late Carboniferous thin-skinned compressional deformation above the SW edge of the East European Craton as revealed by reflection seismic and potential fields data-correlations with the Variscides and the Appalachians. GSA Memoir, 213: 352-372.
  • 59. Krzywiec, P., Peryt, T.M., Kiersnowski, H., Pomianowski, P., Czapowski, G., Kwolek, K., 2017b. Permo-Triassic evaporites of the Polish Basin and their bearing on the tectonic evolution and hydrocarbon system, an overview. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Central Atlantic: Tectonics and Hydrocarbon Potential (eds. J. Soto, J. Flinch and G. Tari): 243-261. Elsevier.
  • 60. Krzywiec, P., Stachowska, A., Stypa, A., 2018a. The only way is up - on Mesozoic uplifts and basin inversion events in SE Poland. Geological Society Special Publications, 469: 33-57.
  • 61. Krzywiec, P., Poprawa, P., Mikołajczak, M., Mazur, S., Malinowski, M., 2018b. Deeply concealed half-graben at the SW margin of the East European Craton (SE Poland) - evidence for Neoproterozoic rifting prior to the break-up of Rodinia. Journal of Palaeogeography, 7: 88-97.
  • 62. Kufrasa, M., Krzywiec, P., Gągała, Ł., Mazur, S., Mikołajczak, M., 2020. Sequence of deformation at the front of an orogen: Lublin basin case study (Poland). Journal of Structural Geology, 141.
  • 63. Kutek, J., 2001. The Polish Permo-Mesozoic Rift Basin. Mémoires du Muséum national d'histoire naturelle, 186: 213-236.
  • 64. Kutek, J., Głazek, J., 1972. The Holy Cross area, central Poland, in the Alpine cycle. Acta Geologica Polonica, 22: 603-651.
  • 65. Larsen, C., Ineson, J., Boldreel, L.O., 2014. Seismic stratigraphy and sedimentary architecture of the Chalk Group in south-west Denmark. Geological Survey of Denmark and Greenland Bulletin, 31: 23-26.
  • 66. Leszczyński, K., 1997. The Upper Cretaceous carbonate-dominated sequences of the Polish Lowlands. Geological Quarterly, 41 (4): 521-532.
  • 67. Leszczyński, K., 1998. Upper Cretaceous (including Upper Albian) - thickness. In: Paleogeographic Atias of the Epicontinental Permian and Mesozoic in Poland (1:2 500 000) (in Polsh with English summary) (eds. R. Dadlez, S. Marek and J. Pokorski): Plate 71. Polish Geological Institute, Warszawa.
  • 68. Leszczyński, K., 2000. The Late Cretaceous sedimentation and subsidence south-west of the Kłodawa Salt Diapir, central Poland. Geological Quarterly, 44 (2): 167-174.
  • 69. Leszczyński, K., 2002. Late Cretaceous inversion and salt tectonics in the Koszalin-Chojnice and Drawno-Czlopa-Szamotuly zones, Pomeranian sector of the Mid-Polish Trough. Geological Quarterly, 46 (3): 347-362.
  • 70. Leszczyński, K., 2010. Lithofacies evolution of the Late Cretatceous basin in the Polish Lowlands (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 443: 33-54.
  • 71. Leszczyński, K. ed., 2011a. Grudziądz IG 1 (in Polish with English summary). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 129: 5-138.
  • 72. Leszczyński, K., 2011b. Profil litologiczno-stratygraficzny otworu wiertniczego Grudziądz IG 1 (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 129: Fig. 4.
  • 73. Leszczyński, K., 2011c. Sukcesja kredowa (z paleocenem dolnym) pogranicza niecek pomorskiej i płockiej oraz syneklizy perybałtyckiej w otworze wiertniczym Grudziądz IG 1 (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 129: 67-71.
  • 74. Leszczyński, K., 2012. The internal geometry and lithofacies pattern of the Upper Cretaceous-Danian sequence in the Polish Lowlands. Geological Quarterly, 56 (2): 363-386.
  • 75. Leszczyński, K., 2017a. The significance of Upper Cretaceous hardgrounds and correlative discontinuity surfaces for basin-wide correlations, based on drillcore data from boreholes in northern Poland. Geological Quarterly, 61 (4): 825-844.
  • 76. Leszczyński, K., 2017b. Evolution of the Nasielsk-Dębe Graben (eastern central Poland) during Cretaceous times (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 470: 49-62.
  • 77. Leszczyński, K., 2018a. Stratygrafia i litologia utworów kredy (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 148: 95-100.
  • 78. Leszczyński, K., 2018b. Litologia i stratygrafia (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 150: 82-86.
  • 79. Leszczyński, K., 2019. Stratygrafia i litologia (bez beriasu dolnego) oraz regionalne tło paleogeograficzne (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 156: 132-136.
  • 80. Levorsen, A.I., 1943. Discovery thinking. AAPG Bulletin, 27: 887-928.
  • 81. Machalski, M., Malchyk, O., 2019. Relative bathymetric position of opoka and chalk in the Late Cretaceous European Basin. Cretaceous Research, 102: 30-36.
  • 82. Marcinowski, R., Radwański, A., 1983. The mid-Cretaceous transgression onto the Central Polish Uplands (marginal part of the Central European Basin). Zitteliana, 10: 65-95.
  • 83. Marek, S., Pajchlowa, M. eds., 1997. The epicontinental Permian and Mesozoic in Poland (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 153: 1-452.
  • 84. Mazur, S., Scheck-Wenderoth, M., Krzywiec, P., 2005. Different modes of inversion in the German and Polish basins. International Journal of Earth Sciences, 94: 782-798.
  • 85. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., Lewandowski, M., 2015. Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34: 2465-2477.
  • 86. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M., Buffenmyer, V., 2016. Pomeranian Caledonides NW Poland - a collisional suture or thin-skinned fold-and-thrust belt? Tectonophysics, 692: 29-43.
  • 87. Merriam, D.F., 2006. Layer-cake stratigraphy from the geobakery or the classic flatland geology of the Midcontinent (USA). The Shale Shaker, 56: 171-176.
  • 88. Mikołajczak, M., Mazur, S., Gągała, Ł., 2019. Depth-to-basement for the East European Craton and Teisseyre-Tornquist Zone in Poland based on potential field data. International Journal of Earth Sciences, 108: 547-567.
  • 89. Mortimore, R., 2011. A chalk revolution: what have we done to the Chalk of England. Proceedings of the Geologists' Association, 122: 232-297.
  • 90. Mortimore, R.N., Pomerol, B., 1987. Correlation of the Upper Cretaceous White Chalk (Turonian to Campanian) in the Anglo-Paris Basin. Proceedings of the Geologists' Association, 98: 97-143.
  • 91. Onajite, E., 2014. Seismic Data Analysis Techniques in Hydrocarbon Exploration. Elsevier, Amsterdam.
  • 92. Perrodon, A., Zabek, J., 1990. Paris Basin. AAPG Memoir, 51: 633-680.
  • 93. Piwocki, M., Badura, J., Przybylski, B., 2004. Niż Polski i jego południowe obrzeżenie - Neogen (in Polish). In: Budowa Geologiczna Polski (eds. T. Peryt and M. Piwocki). Kenozoik, Paleogen, Neogen, 3a: 71-118. Państwowy Instytut Geologiczny, Warszawa.
  • 94. Podhalańska, T., Sikorska-Jaworowska, M. eds., 2018a. Polik IG 1 (in Polish with English summary). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 150: 7-184.
  • 95. Podhalańska, T., Sikorska-Jaworowska, M. eds., 2018b. Profil litologiczno-stratygraficzny otworu wiertniczego Polik IG 1 (in Polish). Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 150: Fig. 4.
  • 96. Poprawa, P., 2019. Geological setting and Ediacaran-Palaeozoic evolution of the western slope of the East European Craton and adjacent regions. Annales Societatis Geologorum Poloniae, 89: 347-380.
  • 97. Pożaryski, W., Brochwicz-Lewiński, W., 1978. On the Polish Trough. Geologie en Mijnbouw. 57: 545-557.
  • 98. Rowan, M.G., Krzywiec, P., 2014. The Szamotuły salt diapir and Mid-Polish Trough: decoupling during both Triassic-Jurassic rifting and Alpine inversion. Interpretation, 2: SM1-SM18.
  • 99. Rudman, A. J., Whaley, J.F., Blakely, R.F., Biggs, M.E., 1975. Transform of resistivity to pseudovelocity logs. AAPG Bulletin, 59: 1151-1165.
  • 100. Scheck-Wenderoth, M., Krzywiec, P., Zülke, R., Maystrenko, Y., Frizheim, N., 2008. Permian to Cretaceous tectonics. In: The Geology of Central Europe, 2: Mesozoic and Cenozoic (ed. T. McCann): 999-1030. Geological Society, London.
  • 101. Sher Iff, R.E., Geldart, L.P., 1995. Exploration Seismology. Cambridge University Press, Cambridge.
  • 102. Sloss, L.L., 1963. Sequences in the cratonic interior of North America. GSA Bulletin, 74: 93-114.
  • 103. Stephenson, R.A., Narkiewicz, M., Dadlez, R., Van Wees, J.D., Andriessen, P., 2003. Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156: 59-70.
  • 104. Surlyk, F., Lykke-Andersen, H., 2007. Contourite drifts, moats and channels in the Upper Cretaceous chalk of the Danish Basin. Sedimentology, 54: 405-422.
  • 105. Świdrowska, J., Hakenberg, M., 1999. Subsidence and the problem of incipient inversion in the Mid-Polish Trough based on thickness maps and Cretaceous lithofacies analysis (in Polish with English summary). Przegląd Geologiczny, 47: 61-68.
  • 106. Świerczewska-Gładysz, E., 2006. Late Cretaceous siliceous sponges from the Middle Vistula River Valley (Central Poland) and their palaeoecological significance. Annales Societatis Geologorum Poloniae, 76: 227-296.
  • 107. Thibault, N., Harlou, R., Schovsbo, N.H., Stemmerik, L., Surlyk, F., 2016. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea. Climate of the Past, 12: 429-438.
  • 108. Torsvik, T.H., Cocks, L.R.M., 2016. Earth History and Palaeogeography. Cambridge University Press.
  • 109. Tozer, B., Watts, A.B., Daly, M.C., 2017. Crustal structure, gravity anomalies, and subsidence history of the Parnaíba cratonic basin, Northeast Brazil. Journal of Geophysical Research, Solid Earth, 122: 5591-5621.
  • 110. Vail, P.R., Mitchum Jr., R.M., Todd, R.G., Widmier, J.M., Thompson III, S., Sangree, J.B., Bubb, J.N., Hatlelid, W.G., 1977. Seismic stratigraphy and global changes of sea level. AAPG Memoir, 26: 49-212.
  • 111. Vejbæk, O.V., Andersen, C., 2002. Post mid-Cretaceous inversion tectonics in the Danish Central Graben-regionally synchronous tectonic events? Bulletin of the Geological Society of Denmark, 49: 139-144.
  • 112. Vejbæk, O.V., Andersen, C., Dusa, M., Herngreen, W., Krabbe, H., Leszczyński, K., Lott, G.K., Mutterlose, J., Van der Molen, A.S., 2010. Cretaceous. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J. C Doornenbal and A.G. Stevenson): 195-209. EAGE Publications b.v. Houten.
  • 113. Van der Voet, E.V.A., Heijnen, L., Reijmer, J.J., 2018. Geological evolution of the Chalk Group in the northern Dutch North Sea: inversion, sedimentation and redeposition. Geological Magazine, 156: 1265-1284.
  • 114. Voigt, S., Wagreich, M., Surlyk, F., Walaszczyk, I., Uličny, D., Cech, S., Voigt, T., Wiese, F., Wilmsen, M., Niebuhr, B., Reich, M., Funk, H., Michalik, J., Jagt, J.W.M., Felder, P.J., Schulp, A.S., 2008. Cretaceous. In: The Geology of Central Europe: Mesozoic and Cenozoic (ed. T. McCann): 923-997. Geological Society, London.
  • 115. Voigt, T., Kley, J., Voigt, S., 2020. Dawn and dusk of Late Cretaceous basin inversion in Central Europe. Solid Earth Discuss: https://doi.org/10.5194/se-2020-188.
  • 116. Von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.-E., Simon, A., 2020. Late Cretaceous to Paleogene exhumation in Central Europe - localized inversion vs. large-scale domal uplift. Solid Earth Discuss: https://doi.org/10.5194/se-2020-183.
  • 117. Vyssotski, A.V., Vyssotski, V.N., Nezhdanov, A.A., 2006. Evolution of the West Siberian basin. Marine and Petroleum Geology, 23: 93-126.
  • 118. Walaszczyk, I., Remin Z., 2015. Kreda obrzeżenia Gór Świętokrzyskich (in Polish). LXXXIV Zjazd Naukowy Polskiego Towarzystwa Geologicznego 2015 (eds. S. Skompski and W. Mizerski): 41-50. Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa.
  • 119. Widess, M.B., 1973. How thin is a thin bed? Geophysics, 38: 1176-1180.
  • 120. Ziegler, P.A., 1987. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland - a geodynamic model. Tectonophysics, 137: 389-420.
  • 121. Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe (2nd edition). Shell Internationale Petroleum Maatschappij BV - Geological Society Publishing House, Bath.
  • 122. Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J., Żytko, K., 2011. Regionalizacja tektoniczna Polski (in Polish). Komitet Nauk Geologicznych PAN, Wrocław.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19af5dae-5abf-41ec-bf27-48a6549e27cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.