PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of soil application of zeolite-carbon composite, leonardite and lignite on the microorganisms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to evaluate the effect of mineral-organic mixture on changes in the abundance of selected soil microorganisms. The experiment contained: soil with NPK (nitrogen, potassium, phosphorus) + 3 % or 6 % lignite (MF+CW3 %, MF+CW6 %) and 3 % zeolite-carbon composite (NaX-C); soil with NPK + 3 % or 6 % leonardite (MF+CL3 %, MF+CL6 %) and 3 % NaX-C; soil without fertilisation (C); soil fertilised with mineral NPK fertilisers (MF). Plants participating in the experiment were spring wheat and spring oilseed rape. The presence of the selected microorganisms was determined: Azotobacter spp., actinomycetes, ammonifiers, bacteria and mold fungi. Using Koch’s serial dilution method, the abundance of selected soil microorganisms was performed. The conducted research allows to conclude that the abundance of detected microorganisms depended on both the applied fertilisation and the plant grown. For the spring oilseed rape, the highest abundance of microorganisms was determined in treatments where fertilisation with lignite mixtures was applied, while for spring wheat, with leonardite mixtures. Increasing (from 3 % to 6 %) the share of lignite and leonardite in fertiliser mixtures did not translate into a proportional growth in the abundance of microorganisms, so such a treatment has no economic justification. Given their alkaline pH, the mixtures used can be a substitute for calcium fertilisers to improve soil properties and, consequently, protect soil organic matter from degradation.
Rocznik
Strony
553--563
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
  • Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, al. A. Mickiewicza 24/28, 30-059 Kraków, Poland
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Environmentalistics and Natural Resources, Mendel University in Brno, Brno, Czech Republic
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Kraków, al. A. Mickiewicza 21, 31-120 Kraków, Poland
Bibliografia
  • [1] Malinowski M, Famielec S. Impact of biochar addition and air-flow rate on ammonia and carbon dioxide concentration in the emitted gases from aerobic biostabilization of waste. Materials. 2022;15:1771. DOI: 10.3390/ma15051771.
  • [2] Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ. 2016;556:89-97. DOI: 10.1016/j.scitotenv.2016.03.010.
  • [3] Wolny-Koładka K, Jarosz R, Marcińska-Mazur M, Lošák T, Mierzwa-Hersztek M. Effect of mineral and organic additions on soil microbial composition. Int Agrophys. 2022;36(2):131-8. DOI: 10.31545/intagr/148101.
  • [4] Lupwayi NZ, Monreal MA, Clayton GW, Grant CA, Johnston AM, Rice WA. Soil microbial biomass and diversity respond to tillage and sulphur fertilisers. Can J Soil Sci. 2001;81:577-89. DOI: 10.4141/S01-010.
  • [5] Wyszkowska J, Borowik A, Kucharski M, Kucharski J. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2013;18:769-96. DOI: 10.5601/jelem.2013.18.4.455.
  • [6] Bandurska K, Krupa P, Berdowska A, Jatulewicz I, Zawierucha I. Mycoremediation of soil contaminated with cadmium and lead by Trichoderma sp. Ecol Chem Eng S. 2021;28:277-86. DOI: 10.2478/eces-2021-0020.
  • [7] Jarosławiecka AK, Piotrowska-Seget Z. The effect of heavy metals on microbial communities in industrial soil in the area of Piekary Śląskie and Bukowno (Poland). Microbiol Res. 2022;13:626-42. DOI: 10.3390/microbiolres13030045.
  • [8] Gałązka A, Gawryjołek K, Grządziel J, Frąc M, Księżak J. Microbial community diversity and the interaction of soil under maize growth in different cultivation techniques. Plant Soil Environ. 2017;63:264-70. DOI: 10.17221/171/2017-PSE.
  • [9] Beheshti M, Etesami H, Alikhani HA. Effect of different biochars amendment on soil biological indicators in a calcareous soil. Environ Sci Pollut Res. 2018;25:14752-61. DOI: 10.1007/s11356-018-1682-2.
  • [10] Górski R, Szopińska D, Dorna H, Rosińska A, Stefańska Z, Lisiecka J. Effects of plant extracts and disinfectant Huva-San TR 50 on the quality of carrot (Daucus carota L.) seeds. Ecol Chem Eng S. 2020;27:617-28. DOI: 10.2478/eces-2020-0039.
  • [11] Soltys L, Myronyuk I, Tatarchuk T, Tsinurchyn V. Zeolite-based composites as slow release fertilisers (review). J Phys Chem Solids. 2020;21:89-104. DOI: 10.15330/pcss.21.1.89-104.
  • [12] Akimbekov N, Qiao X, Digel I, Abdieva G, Ualieva P, Zhubanova A. The effect of leonardite-derived amendments on soil microbiome structure and potato yield. Agriculture. 2020;10:147. DOI: 10.3390/agriculture10050147.
  • [13] Majchrowska-Safaryan A, Tkaczuk C, Symanowicz B. Effects of the application of a mineral-and-organic fertiliser produced from brown coal on the occurrence and infectious potential of entomopathogenic fungi in soil. J Ecol Eng. 2017;18:140-8. DOI: 10.12911/22998993/70184.
  • [14] Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, et al. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertiliser management. Soil Biol Biochem. 2007;39:2971-6. DOI: 10.1016/j.soilbio.2007.05.031.
  • [15] Elbl J, Maková J, Javoreková S, Medo J, Kintl A, Lošák T, et al. Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality. Agronomy. 2019;9:485. DOI: 10.3390/agronomy9090485.
  • [16] Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, et al. Integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2012;41:D764-72. DOI: 10.1093/nar/gks1049.
  • [17] Wolińska A, Rekosz-Burlaga H, Goryluk-Salmonowicz A, Błaszczyk M, Stępniewska Z. Bacterial abundance and dehydrogenase activity in selected agricultural soils from Lublin Region. Polish J Environ Stud. 2015;24:6. DOI: 10.15244/pjoes/59323.
  • [18] PN-R-04032:1998, The Polish Committee for Standardization, 1998. Soils and mineral deposits - Sampling and determination of the grain size composition. Available from: https://sklep.pkn.pl/pn-r-04032-1998p.html?fbclid=IwAR2Z2scbemFfSaTJsmajzMVhP7JcV5NOJSd-Zjf7heiLYg0xLPAGLykGQoA.
  • [19] Oleszczuk N, Castro JT, da Silva MM, Korn M, Welz B, Vale MG. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta. 2007;73:862-9. DOI: 10.1016/j.talanta.2007.05.005.
  • [20] Houba VJG, Temminghoff EJM, Gaikhorst GA, van Vark W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci. Plant Anal. 2000;31:1299-396. DOI: 10.1080/00103620009370514.
  • [21] Thalmann A. Zur Methodik der Bestimmung der Dehydrogenase Aktivität in Boden Mittels Triphenyltetrazoliumchlorid (TTC) (Determination of the dehydrogenase activity in soils using triphenyltetrazolium chloride). Landwirtsch Forsch. 1968;21:249-58. Available from: https://chemportn.cas.org/chemportn/?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1%3ACAS%3A528%3ADyaF1MXksVyksrw%3D&md5=b77f8d25b689aa089b627b99665ee3fb&fbclid=IwAR07xp8aVRY5CECGzuvddjXDKOIwJKDHP37tFcQWc-fSUF3M6ItLNBQ4dUo.
  • [22] Kopeć M, Mierzwa-Hersztek M, Gondek K, Wolny-Koładka K, Zdaniewicz M, Jarosz R. Biological activity of composts obtained from hop waste generated during the brewing. Biomass Convers Bior. 2020;12:1271-9. DOI: 10.1007/s13399-020-00746-6.
  • [23] Atlas R.M. Handbook of Microbiological Media (4th ed.). CRC Press; Boca Raton: 2010. DOI: 10.1201/EBK1439804063.
  • [24] Wolny-Koładka K, Żukowski W. Mixed municipal solid waste hygienisation for refuse-derived fuel production by ozonation in the novel configuration using fluidized bed and horizontal reactor. Waste Biomass Valor. 2019;10:575-83. DOI: 10.1007/s12649-017-0087-7.
  • [25] Malinowski M. Biostabilization process of undersized fraction of municipal solid waste with biochar addition. J Mater Cycles Waste Manage. 2022;24:2201-15. DOI: 10.1007/s10163-022-01466-x.
  • [26] Rousk J, Brookes P, Bååth E. Contrasting soil pH effects on fungal and bac terial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbial. 2009;75:1589-96. DOI: 10.1128/AEM.02775-08.
  • [27] Zhao Y, Wang X, Yao G, Lin Z, Xu L, Jiang Y, et al. Advances in the effects of biochar on microbial ecological function in soil and crop quality. Sustainability. 2022;14:10411. DOI: 10.3390/su141610411.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19ad7607-b8fa-4cf1-9fbb-7306f68d8dbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.