Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a semi-analytical approach is proposed for free vibration analysis of a multi-span, orthotropic bridge deck with rubber bearings. This allows more realistic modeling of vibration transmission from a bridge’s deck to its supports. The approach is based on modal superposition incorporating intermodal coupling. The bridge deck was modeled as a continuous, multi-span, orthotropic rectangular plate with equivalent rigidities. The rubber bearings were inserted between the girders and rigid supports to absorb traffic induced vibrations. The rubber bearing was modeled by linear elastic, vertical supports as very flexible in rotation and highly rigid in the vertical direction. The method’s efficacy was validated against two numerical examples. The absolute error was less than 10%.
Czasopismo
Rocznik
Tom
Strony
11--21
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Applied Mechanics of New Materials Laboratory, University of 8 May 1945-Guelma, Algeria
autor
- Applied Mechanics of New Materials Laboratory, University of 8 May 1945-Guelma, Algeria
autor
- Mechanic and Structures Laboratory, University of 8 May 1945-Guelma, Algeria
autor
- Center for Urban Science and Progress and Department of Civil Engineering, Tandon School of Engineering Center for Urban Science and Progress, New York University, United States of America
autor
- Applied Mechanics of New Materials Laboratory, University of 8 May 1945-Guelma, Algeria
Bibliografia
- 1. Bakht B, Jaeger LG. Bridge Analysis Simplified. McGraw-Hill, New York, 1985. https://lib.ugent.be/catalog/rug01:000191562.
- 2. Davalos JF, Qiao P, Shan L. Advanced fiberreinforced polymer (FRP) composites for use in civil engineering. Advanced civil infrastructure materials: Science, mechanics and applications ed. Wu HC. New York, EPublishing Inc, 2006; 118-202. www.woodheadpublishing.com.
- 3. Timoshenko SP, Woinowsky KS. Theory of Plates and Shells, McGraw-Hill Book Company, New York, 1959.
- 4. Leissa AW. Vibration of plates, Acoustical Society of America, 1993.
- 5. Zhu XQ, Law SS. Moving load identification on multi-span continuous bridges with elastic bearings. Mechanical Systems and Signal Processing. 2006; 20:1759-1782. https://doi.org/10.1016/j.ymssp.2005.06.004.
- 6. Lin HP, Chang SC. Free vibration analysis of multispan beams with intermediate flexible constraints. Journal of Sound and Vibration. 2005; 281:155-169. https://doi.org/10.1016/j.jsv.2004.01.010.
- 7. Li WL, Zhang X, Du J, Liu Z. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports. Journal of Sound and Vibration. 2009; 321: 254-269 https://doi.org/10.1016/j.jsv.2008.09.035.
- 8. Takabatake H, Nagareda Y. A simplified analysis of elastic plate with edge beams. Journal of Computer and Structures. 1999; 70:129-139. https://doi.org/10.1016/S0045-7949(98)00164-3.
- 9. Vinson JR. The behavior of thin walled structures: beams, plates, and shells, Dordrecht Kluwer, 1989.
- 10. Cheung YK, Zhou D. Vibrations of rectangular plates with elastic intermediate line-supports and edge constraints. Journal of Thin-Walled Structures. 2000; 37:305-331. https://doi.org/10.1016/S0263-8231(00)00015-X.
- 11. Gorman DJ, Garibaldi L. Accurate analytical type solutions for free vibration frequencies and mode shapes of multi-span bridge decks: the span-by-span approach. Journal of Sound and Vibration. 2006; 290: 321-336. https://doi.org/10.1016/j.jsv.2005.03.020.
- 12. Rezaiguia A, Laefer DF. Semi-analytical determination of natural frequencies and mode shapes of multispan bridge decks. Journal of Sound and Vibration. 2009; 328: 291-300. https://doi.org/10.1016/j.jsv.2009.08.007.
- 13. Rezaiguia A, Fisli Y, Ellagoune S, Laefer DF, Ouelaa N. Extension of semi- analytical approach to determine natural frequencies and mode shapes of a multispan orthotropic bridge deck. Structural Engineering and Mechanics. 2012; 43: 71-87. http://dx.doi.org/10.12989/sem.2012.43.1.071.
- 14. Kunde MC, Jangid RS. Effects of Pier and Deck Flexibility on the Seismic Response of Isolated Bridges. Journal of Bridge Engineering. 2006; 11(1): 109-121. https://doi.org/10.1061/(asce)1084-0702(2006)11:1(109).
- 15. Service d'études techniques des routes et autoroutes, appareils d’appuis en elastomere frette : utilisation sur les ponts, viaducs et structures similaires. Ministere de l’ecologie du developpement et de l’amenagement durable, republique française. 2007. https://www.decitre.fr/livres/appareil-d-appui-enelastomere-frette-5552000544343.html.
- 16. Zhu XQ, Law SS. Dynamic behavior of orthotropic rectangular plate under moving loads. Journal of Engineering Mechanics. 2003; 129(1): 79-87. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:1(79).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19acc409-ba8a-4418-8cb1-ec77b0435a23