PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The utilization of Al2O3 nanoparticles in combustion engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie nanocząstek Al2O3 w silnikach spalinowych
Języki publikacji
EN
Abstrakty
EN
The methods used for obtaining Al2O3 nanoparticles were discussed in the paper. The utilization of Al2O3 nanoparticles to improve thermal conduction and tribological properties in different media including engine oil was presented therein.
PL
W pracy omówiono metody stosowane do otrzymywania nanocząstek Al2O3. Przedstawiono wykorzystanie nanocząstek Al2O3 w celu poprawy przewodnictwa cieplnego i właściwości tribologicznych w różnych mediach, w tym oleju silnikowym.
Rocznik
Strony
642--645
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Politechnika Łódzka
  • Politechnika Łódzka
Bibliografia
  • 1. Calhoun S.F., Antiwear and extreme pressure additives for greases, Tribology Transactions, 3, 1960, pp. 208-214.
  • 2. Ettefaghi E., Ahmadi H., Rashidi A., Mohtasebi S.S., Alaei M., Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive, Int J Ind Chem, 2013, 4: 28. https://doi.org/10.1186/2228-5547-4-2.
  • 3. Thirumalaikumaran A., The Tribological Behaviour of Nanoparticles Mixed Lubricating Oil – Review, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056, Vol. 4, Issue 4, 2017, 3217-3228.
  • 4. Maxwell J.C., ‘A treatise on electricity and magnetism’, Unbridged 3rd ed., Clarendon Press, 1891, Oxford, UK.
  • 5. Hamilton R.L., Crosser O.K., Thermal conductivity of heterogeneous two component systems, I & EC Fundamentals, Vol. 1, No. 3, 1962, pp.187–191.
  • 6. Lee S., Choi U.S., Li S., Eastman J.A., Measuring Thermal Conductivity of fluids containing oxide nanoparticles, Journal of Heat transfer, 121, 1999, pp. 280-289.
  • 7. Sidik N.A.C., Mohammed H.A., Alawi O.A., Samion S., A review on preparation methods and challenges of nanofluids, International Communications in Heat and Mass Transfer, 54, 2014, pp. 115–125.
  • 8. Suresh S., Selvakumar P., Chandrasekar M., Srinivasa Raman V., Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid under turbulent flow with spiraled rod inserts, Chem. Eng. Process. Process Intensif. 53, 2012, pp. 24–30.
  • 9. Beck M.P., Sun T., Teja A.S., The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol, Fluid Phase Equilib. 260 (2), 2007, pp. 275–278.
  • 10. Beck M.P., Yuan Y., Warrier P., Teja A.S., The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research, 11, 2009, pp. 1129-1136.
  • 11. Gharagozloo P.E., Goodson K.E., Temperature-dependent aggregation and diffusion in nanofluids, Int. J. Heat Mass Transf., 54 (4), 2011, pp. 797–806.
  • 12. Soltani S., Etemad S.Gh., Thibault J., Pool boiling heat transfer of non-Newtonian nanofluids, Int. Commun. Heat Mass Transfer, 37 (1), 2010, pp. 29–33.
  • 13. Hung Y-H, Teng T-P, Lin B-G, Evaluation of the thermal performance of a heat pipe using alumina nanofluids, Exp. Thermal Fluid Sci., 44, 2013, pp. 504–511.
  • 14. Chandrasekar M., Suresh S., Bose A.C., Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Exp. Thermal Fluid Sci., 34 (2), 2010, pp. 210–216.
  • 15. Jian Q., Huiying W., Cheng P., Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids, Int. Commun. Heat Mass Transfer, 37 (2), 2010, pp. 111–115.
  • 16. Anoop K.B., Sundararajan T., Das S.K., Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. Heat Mass Transf., 52 (9), 2009, pp. 2189–2195.
  • 17. Pastoriza-Gallego M.J., Casanova C., Paramo R., Baroes B., Legido J.L., Pineiro M.M., Study on stability and thermo physical properties (density and viscosity) of Al2O3 in water nanofluids, J. Appl. Phys., 106, 2009, pp. 0643038.
  • 18. Jung J-Y, Kim E.S., Kang Y.T., Stabilizer effect on CHF and boiling heat transfer coefficient of alumina/water nanofluids, Int. J. HeatMass Transf., 55 (7), 2012, pp. 1941–1946.
  • 19. Pang C., Jung J-Y, Lee J.W., Kang Y.T., Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles, Int. J. Heat Mass Transf., 55, 2012, pp. 5597–5602.
  • 20. Abdullah M.I.H.C., Abdollah M.F.B., Amiruddin H., Nuri N.R.M., Tamaldin N., Hassan M., Rafeq S.A., Effect of hBN/Al2O3 nanoparticles on engine oil properties, Energy Education Science and Technology Part A: Energy Science and Research, Vol. 32, issue 5, 2014, pp. 3261-3268.
  • 21. Lee, S., Choi U.S., Li, S., and Eastman, J.A., Measuring Thermal Conductivity of fluids containing oxide nanoparticles, Journal of Heat transfer, 121, 1999, pp. 280-289.
  • 22. Vajjha R.S., Das D.K., Namburu P.K., Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, International Journal of Heat and Fluid Flow, vol. 31, no. 4, 2010, pp. 613–621.
  • 23. Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J., Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Ap-plied Physics Letters, vol. 78, no. 6, 2001, pp. 718–720.
  • 24. Wang X., Xu X., Choi S.U.S., Thermal Conductivity of nanoparticle-fluid Mixture, Journal of Thermo physics and Heat transfer, 1999.
  • 25. Murshed, S.M.S., Leong, K.C., Yang, C., A Combined Model for the Effective Thermal Conductivity of Nano fluids, Applied Thermal Engineering, 2009.
  • 26. Das S.K., Putra N., Thiesen P., Roetzel W., Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. Journal of Heat Transfer, 125, 2003, pp. 567-574.
  • 27. Le V.N-A, Lin J-W, Tribological Properties of Aluminum Nanoparticles as Additives in an Aqueous Glycerol Solution, Appl. Sci. 2017, 7, 80; doi:10.3390/app7010080.
  • 28. Peng D.X., Kang Y., Chen S.K., Shu F.C., Chang Y.P., Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Ind. Lubr. Tribol., 62, 2010, pp. 341–348.
  • 29. Thakre A.A., Thakur A., Study of behaviour of aluminium oxide nanoparticles suspended in SAE20W40 oil under extreme pressure lubrication. Ind. Lubr. Tribol., 67, 2015, pp. 328–335.
  • 30. Thakre A.A., Shinde A., Mundhe G., Improvement in boundary lubrication characteristics of SAE20W40 oil using aluminum oxide nanoparticles. J. Tribol., 138, 2015, pp. 034501–034504.
  • 31. Le V.N-A, Lin J-W, Tribological Properties of Aluminum Nano-particles as Additives in an Aqueous Glycerol Solution, Appl. Sci., 7, 2017, p. 80; doi:10.3390/app7010080.
  • 32. Yesaswi C.S., Krishna K.A., Varma A.P.G., Girish K., Varma K.J., Characterization of AL2O3 Nano Particles in Engine Oil for Enhancing the Heat transfer rate, International Journal of Engineering & Technology, Vol 7, No 2.32 (2018): Special Issue 32.
  • 33. Mohan N., Sharma M., Singh R., Kumar, N., Tribological Properties of Automotive Lubricant SAE 20W-40 Containing Nano-Al2O3 particles, SAE Technical Paper 2014-01-2781, 2014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19aa1e9e-b71f-42fe-a036-9b7bb601780f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.