Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the last 20 years, a new meshless computational method has been developed that is called peridynamics. The method is based on the parallelized code. The subject of the study is the deformation of open-cell copper foams under dynamic compression. The computational model of virtual cellular material is considered. The skeleton structure of such a virtual cellular material can be rescaled according to requirements. The material of the skeleton is assumed as the oxygen free high conductivity (OFHC) copper. The OFHC copper powder can be applied in additive manufacturing to produce the open-cell multifunctional structures, e. g., crush resistant heat exchangers, heat capacitors, etc. In considered peridynamic computations the foam skeleton is described with the use of an elastic-plastic model with isotropic hardening. The dynamic process of compression and crushing with different impact velocities is simulated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1603--1610
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wzory
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B A. Pawińskiego Str., 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B A. Pawińskiego Str., 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B A. Pawińskiego Str., 02-106 Warszawa, Poland
Bibliografia
- [1] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48, 175 (2000).
- [2] S. A. Silling, E. Askari, A mesh free method based on the peridynamic model of solid mechanics, Computers and Structures 83, 1526-1535 (2005).
- [3] S. A. Silling, M. Epton, O. Weckener, J. Xu, E. Askari, Peridynamic states and constitutive modeling, J. Elasticity 88, 151-184 (2007).
- [4] A. Stręk, Production and study of polyether auxetic foam, Mech. Control 29, 78-87 (2010).
- [5] M. Nowak, Z. Nowak, R. Pęcherski, M. Potoczek, R. Śliwa, On the reconstruction method of ceramic foam structures and the methodology of Young modulus determination, Arch. Metal. Mater. 58, 1219-1222 (2013).
- [6] R. B. Pęcherski, M. Nowak, Z. Nowak, Virtual metallic foams, applications for dynamic crushing analysis, Int. J. Multiscale Comput. Engng. 15, 431-442 (2017).
- [7] J. Lubliner, Plasticity Theory, Dover Publications (2008).
- [8] R. Hill, The Mathematical Theory of Plasticity. Oxford University Press: Oxford (1998) (first edition 1956).
- [9] J. A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics, Sandia report, SAND2011-3166 (2011).
- [10] ScanIP+FE, www.simpleware.com/software/scanip, ver. 7.0 (2014).
- [11] GiD http://www.gidhome.com/
- [12] GMSH http://gmsh.info/
- [13] Peridigm Users’Guide, M. L. Parks, D. J. Littlewood, J. A. Mitchell, S. A. Silling, Tech. Report SAND2012-7800, Sandia National Laboratories (2012).
- [14] M. Janas, J. Sokół-Supel, E. Postek, Arching action in slackened structures, Foundations of Civil and Environmental Engineering 1, pp. 97-109 (2002).
- [15] R. B. Pęcherski, Macroscopic measure of the rate of deformation produced by micro-shear banding, Arch. Mech. 49, 385-401 (1997).
- [16] Z. Nowak, P. Perzyna, R. B. Pęcherski, Description of viscoplastic flow accounting for shear banding, Arch. Metal. Mater. 52, 217-218 (2007).
- [17] D. Rogula, Nonlocal theory of material media, Springer, Wien, New-York (1982).
- [18] A. Kunin, Elastic media with microstructure, one dimensional models, Springer, Berlin, Heidelberg, New-York (1982).
- [19] A. C. Eringen, Nonlocal continuum field theories, Springer, New-York, Berlin, Heidelberg (2001).
- [20] G. Z. Voyiadjis, Handbook if Nonlocal Continuum Mechanics for Materials and Structures, Springer (2019).
- [21] W. Sumelka, A note on non-associated Drucker-Prager plastic flow in terms of fractional calculus, Journal of Theoretical and Applied Mechanics 52, 571-574 (2014).
- [22] W. Sumelka, Non-local Kirchhoff-Love plates in terms of fractional calculus, Archives of Civil and Mechanical Engineering 15, 231-242 (2015).
- [23] J. Litoński, Plastic flow of a tube under adiabatic torsion, Bulletin de l’Academie Polonaise des Sciences 25, 7-17 (1977).
- [24] R. C. Batra, L. Chen, Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material, International Journal of Plasticity 17, 1465-1489 (2001).
- [25] P. Perzyna, Fundamental problems in viscoplasticity, Adv. Appl. Mech. 9, 243-377 (1966).
- [26] W. Sumelka, T. Łodygowski, The influence of the initial microdamage anisotropy on macrodamage mode during extremely fast thermomechanical processes, Archive of Applied Mechanics 81 (12), 1973-1992 (2011).
Uwagi
EN
Calculations are performed using the "Okeanos” Cray CX40 system at the Interdisciplinary Centre for Mathematical and Computational Modelling in the University of Warsaw, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19a95b63-bfb0-4ef9-975a-7f7e298d8f62