PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

ZnO - Wide bandgap semiconductor and possibilities of its application in optical waveguide structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of ZnO layers and their coefficients of spectral transmission within the UV-VIS-NIR range. Besides that, also the mode characteristics and the attenuation coefficients of light in the obtained waveguide structures have been investigated. In the case of planar waveguides, in which the ZnO layers have not been annealed after their deposition, the values of the attenuation coefficient of light modes amount to a ≈ 30 dB/cm. The ZnO layers deposited on the heated substrate and annealed by rapid thermal annealing in an N2 and O2 atmosphere, are characterized by much lower values of the attenuation coefficients: a ≈ 3 dB/cm (TE0 and TM0 modes). The ZnO optical waveguides obtained according to our technology are characterized by the lowest values of the attenuation coefficients a encountered in world literature concerning the problem of optical waveguides based on ZnO. Studies have shown that ZnO layers elaborated by us can be used in integrated optic systems, waveguides, optical modulators and light sources.
Rocznik
Strony
401--412
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Optoelectronics at the Silesian University of Technology, 2 Akademicka Str., 44-100 Gliwice, Poland (+48322371208)
autor
  • Department of Optoelectronics at the Silesian University of Technology, 2 Akademicka Str., 44-100 Gliwice, Poland (+48322371208)
  • Institute of Electron Technology, 32/46 Lotnikow Al, 02-668 Warsaw, Poland (+48225487940)
  • Institute of Physics at Polish Academy of Sciences, 32/46 Lotnikow Al, 02-668 Warsaw
autor
  • Institute of Electron Technology, 32/46 Lotnikow Al, 02-668 Warsaw, Poland (+48225487940)
  • Institute of Physics at Polish Academy of Sciences, 32/46 Lotnikow Al, 02-668 Warsaw
  • Institute of Electron Technology, 32/46 Lotnikow Al, 02-668 Warsaw, Poland (+48225487940)
Bibliografia
  • [1] Lambeck, P.V. (2006). Integrated optical sensors for the chemical domain, Measurement Science and Technology, 17, 93-116,.
  • [2] Barczak, K, Pustelny, T., Dorosz, D., Dorosz, J., (2008). The new sensing fibre for application in optical fibre current sensor, Acta Physica Polonica A, 114 (6A), A3-A6.
  • [3] Detka, M., Kaczmarek, Z. Distributed strain reconstruction based on a fiber Bragg grating reflection spectrum (2013). Metrology and Measurement Systems, XX (1), 53-64.
  • [4] Barczak, K., Pustelny, T., Zycki, Z., Błażejczyk, T., (2009). Optical Fibre Magnetic Field Sensors for Monitoring of the State of Work of Electric Motors, Acta Physica Polonica A, 116 (3), 250-253.
  • [5] Maciak, E., Opilski, Z., Pustelny, T., Bednorz, M., (2005). An optical detection NH3 gas by means of a-WO3 thin films based on SPR technique, Journal De Physique. IV: JP, 129, 131-136.
  • [6] Pustelny, T., Ignac-Nowicka, J., Opilski, Z., (2004). Experimarntal investigatio of thin metalphthalocyanine layers CuPc, PbPc, NiPc by plazmon resonance metod to be applied in NO2-sensoors, Optica Applicata, 34 (2), 249-264.
  • [7] Pustelny, T., Setkiewicz, M., Drewniak, S., Maciak, E., Stolarczyk, A., Urbańczyk, M., Procek, M., Gut, K., Opilski, Z., Pasternak, I., Strupinski, W., (2013). The sensibility of resistance sensor structures with grapheme, to the action of selected gaseous media, Bulletin of the Polish Academy of Sciences -Technical Sciences, 61(2), 293-300.
  • [8] Pustelny, T., Drewniak, S., Setkiewicz, M., Maciak, E., Urbanczyk, M., Procek, M., Gut, K., Lipinska, L., (2013). The sensitivity of sensor structures with oxide graphene expose to selected gaseous atmospheres, Bulletin of the Polish Academy of Sciences - Technical Sciences, 61(3), 705-710.
  • [9] Bamiedakis, N., Hutter, T., Penty, R. V., White, L. H., Elliott, S. R., (2013). PCB-Integrated Optical Waveguide Sensors: an Ammonia Gas Sensor, Journal of Lightwave Technology, 31, 1628-1635.
  • [10] Koster, T.M., Lambeck, P.V., (2002). Fully integrated optical polarimeter, Sensors and Actuators B, 82, 213-226.
  • [11] Suchea, M., Christoulakis, S., Moschovis, K., Katsarakis, N., Kiriakidis, G., (2006). ZnO transparent thin films for gas sensor applications, Thin Solid Films, 515, 551-554.
  • [12] Bielecki, Z., Janucki, J., Kawalec, A., Mikołajczyk, J., Pałka, N., Pasternak, M., Pustelny, T., Stacewicz, T., Wojtas, J., (2012). Sensors and systems for the detection of explosive devices. An overview, Metrology and Measurement Systems, 19(1), 3-28.
  • [13] Lotin, A.A., Novodvorsky, O.A., Zuev, D.A., Khramiva, O.D., Parshina, L.S., Lebedev, F.V., Baetha, J.W., Wenszel, C., (2013). Influence of growth temperature on physical properties of ZnO films produced by pulsed laser deposition method, Optical Materials, 35(8), 1564-1570.
  • [14] O’Brien, S., Nolan, M. G., Çopuroglu, M., Hamilton, J. A., Povey, I., Pereira, L., Martins, R., Fortunato, E., Pemble, M., (2010). Zinc oxide thin films: Characterization and potential applications, Thin Solid Films, 518, 4515-1519.
  • [15] Gupta, V. Mehan, N., Tomar, M., Mansingh, A., (2004). Optical waveguiding and birefringence properties of sputtered zinc oxide (ZnO) thin films on glass, Optical Materials, 27, 241-248.
  • [16] Pustelny, T., Maciak, E., Opilski, Z., Piotrowska, A., Papis, E., Golaszewska, K., (2008). Investigation of the ZnO sensing structure on TeX action by means of the surface plasmon resonance method, European Physical Journal: Special Topics, 154(1), 165-170.
  • [17] Yi, F., Huang, Y., Zhang, Z. Q., Zhang, Y., (2013). Photoluminescence and highly selective photoresponse of ZnO nanorod array, Optical Materials, 35, 1532-1537.
  • [18] Struk, P., Pustelny, T., Pustelny, B., Gołaszewska, K., Kaminska, E., Piotrowska, A., Borysiewicz, M. and Ekielski, M., (2010). Zinc Oxide Semiconductor for Photonics Structures Applications, Acta Physica Polonica A, 118(6), 1242-1245.
  • [19] Mazingue, T., Escoubas, L., Spalluto, L., Flory, F., Jacquouton, P., Perrone, A., Kaminska, E., Piotrowska, A., Mihailescu, I., Atanasov, P., (2006). Optical characterizations of ZnO, SnO2, and TiO2 thin films for butane detection. Applied Optics, 45(7), 1425-1435.
  • [20] Mehan, N., Gupta, V., Sreenivas, K., and Mansingh, A., (2004). Effect of annealing on refractive indices of radio-frequency magnetron sputtered waveguiding zinc oxide films on glass, Journal of Applied Physics, 96(6) 3134-3139.
  • [21] Özgür, Ü., Alivov, Ya. ILiu., C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., (2005). A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98(4), 041301-39- 041301-57.
  • [22] Jiménez-García, F.N., Espinosa-Arbeláez, D.G., Vargas-Hernández, C., Real A., Rodríguez-García, M.E., (2011). Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method. Thin Solid Films, 519, 7638-7643.
  • [23] Struk, P., Pustelny, T., Gut, K., Golaszweska, K., Kaminska, E., Ekielski, M., Pasternak, I., Lusakowska, E., Piotrowska, A., (2009). Planar optical waveguides based on thin ZnO layers, Acta Physica Polonica A, 116(3) 414-418.
  • [24] Struk, P., Pustelny, T., Galaszewska, K., Kaminska, E., Borysewicz, M., Ekielski, M., Piotrowska, A., (2013). Photonic structures with grating couplers based on ZnO, Opto-Electronics Review, 21(4),376-381.
  • [25] Struk, P., Pustelny, T., (2010). Design and numerical analyses of the planar grating coupler, Bulletin of Polish Academy of Science: Technical Sciences. 58 (4), 509-512.
  • [26] Struk, P., Pustelny, T., Galaszewska K., Borysewicz M. A., Piotrowska, A. (2013). Gas Sensors Based on ZnO Structures, Acta Physica Polonica A, 124(3), 567-569.
Uwagi
EN
The presented investigations were supported by the Polish National Centre for Research and Development (NCBiR) under the Structural Program WND-POIG.01.03.01-00-159/08-00.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19a8e322-01cd-4d29-a7f3-06461bd4b6b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.