PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical process control of commercial force-sensing resistors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manufacturing and characterization of polymer nanocomposites is an active research trend nowadays. Nonetheless, statistical studies of polymer nanocomposites are not an easy task since they require several factors to consider, such as: large amount of samples manufactured from a standardized procedure and specialized equipment to address characterization tests in a repeatable fashion. In this manuscript, the experimental characterization of sensitivity, hysteresis error and drift error was carried out at multiple input voltages (𝑈𝑠) for the following commercial brands of FSRs (force sensing resistors): Interlink FSR402 and Peratech SP200-10 sensors. The quotient between the mean and the standard deviation was used to determine dispersion in the aforementioned metrics. It was found that a low mean value in an error metric is typically accompanied by a comparatively larger dispersion, and similarly, a large mean value for a given metric resulted in lower dispersion; this observation was held for both sensor brands under the entire range of input voltages. In regard to sensitivity, both sensors showed similar dispersion in sensitivity for the whole range of input voltages. Sensors’ characterization was carried out in a tailored test bench capable of handling up to 16 sensors simultaneously; this let us speed up the characterization process.
Rocznik
Strony
469--481
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • GIFAM Group, Universidad Antonio Nariño, Cra 7 No. 21-84, 150001 Tunja, Boyacá, Colombia
  • Universidad Católica de Colombia, Faculty of Engineering, Carrera 13 # 47-30, Bogota, Colombia
  • Universidad Católica de Colombia, Faculty of Engineering, Carrera 13 # 47-30, Bogota, Colombia
Bibliografia
  • [1] Alotaibi, A., & Anwar, S. (2021). A Fuzzy Logic based piezoresistive/piezoelectric fusion algorithm for carbon nanocomposite wide band strain sensor. IEEE Access, 9, 14752-14764. https://doi.org/10.1109/ACCESS.2020.3049081
  • [2] Chen, T., Wei, P., Chen, G., Liu, H., Mugaanire, I. T., Hou, K., & Zhu, M. (2021). Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. Journal of Materials Chemistry A, 9(20), 12265-12275. https://doi.org/10.1039/d1ta02422a
  • [3] Cui, C., Fu, Q., Meng, L., Hao, S., Dai, R., & Yang, J. (2020). Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS Applied Bio Materials, 4(1), 85-121. https://doi.org/10.1021/acsabm.0c00807
  • [4] Liu, Z. Z., Wang, H. P., Yuan, L., Wang, W., Zhang, C., & Xue, Y. (2021). A film stress measurement system applicable for hyperbaric environment and its application in coal and gas outburst simulation test. Metrology and Measurement Systems, 28(1), 73-88. https://doi.org/10.24425/mms.2021.135991
  • [5] Fernandez, F. D. M., Khadka, R., & Yim, J. H. (2020). Highly porous, soft, and flexible vapor-phase polymerized polypyrrole-styrene-ethylene-butylene-styrene hybrid scaffold as ammonia and strain sensor. RSC Advances, 10(38), 22533-22541. https://doi.org/10.1039/d0ra03592k
  • [6] Lu, L., Yang, B., & Liu, J. (2020). Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chemical Engineering Journal, 400, 125928. https://doi.org/10.1016/j.cej.2020.125928
  • [7] Shukla, P., & Saxena, P. (2021). Polymer nanocomposites in sensor applications: a review on present trends and future scope. Chinese Journal of Polymer Science, 39(6), 665-691. https://doi.org/10.1007/s10118-021-2553-8
  • [8] Sharma, S., Sudhakara, P., Omran, A. A. B., Singh, J., & Ilyas, R. A. (2021). Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers, 13(17), 2898. https://doi.org/10.3390/polym13172898
  • [9] Idumah, C. I., Ezeani, E. O., & Nwuzor, I. C. (2021). A review: advancements in conductive polymers nanocomposites. Polymer-Plastics Technology and Materials, 60(7), 756-783. https://doi.org/10.1080/25740881.2020.1850783
  • [10] Ma, Z., Li, H., Jing, X., Liu, Y., & Mi, H. Y. (2021). Recent advancements in self-healing composite elastomers for flexible strain sensors: Materials, healing systems, and features. Sensors and Actuators A: Physical, 329, 112800. https://doi.org/10.1016/j.sna.2021.112800
  • [11] Chang, S., Li, J., & Liu, H. (2020). Research Progress of Flexible Strain/Pressure Sensors Based on Biomaterial Derived Materials. Materials Reports, 34(19), 19173-19182. https://doi.org/10.11896/cldb.19050179 (in Chinese)
  • [12] Saleh, M. A., Kempers, R., & Melenka, G. W. (2021). A comparative study on the electromechanical properties of 3D-Printed rigid and flexible continuous wire polymer composites for structural health monitoring. Sensors and Actuators A: Physical, 328, 112764. https://doi.org/10.1016/j.sna.2021.112764
  • [13] Yuan, C. L., & Lin, S. W. (2014). Detection of organic chemical vapors with a MWNTs-polymer array chemiresistive sensor. Materials Science-Poland, 32(1), 50-58. https://doi.org/10.2478/s13536-013-0160-2
  • [14] Speller, N. C., Siraj, N., McCarter, K. S., Vaughan, S., & Warner, I. M. (2017). QCM virtual sensor array: Vapor identification and molecular weight approximation. Sensors and Actuators B: Chemical, 246, 952-960. https://doi.org/10.1016/j.snb.2017.02.042
  • [15] Jaffal, D., Daniels, S., Tang, H. Y., Ghadimi, H., & Monty, C. N. (2021). Electroconductive nylon-6/multi-walled carbon nanotube nanocomposite for sodium sensing applications. Composites Part C: Open Access, 4, 100116. https://doi.org/10.1016/j.jcomc.2021.100116
  • [16] Zhao, X., Wang, W., Wang, Z., Wang, J., Huang, T., Dong, J., & Zhang, Q. (2020). Flexible PEDOT: PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications. Chemical Engineering Journal, 395, 125115. https://doi.org/10.1016/j.cej.2020.125115
  • [17] Lai, H., Zhuo, H., Hu, Y., Shi, G., Chen, Z., Zhong, L., & Zhang, M. (2021). Anisotropic carbon aerogel from cellulose nanofibers featuring highly effective compression stress transfer and pressure sensing. ACS Sustainable Chemistry & Engineering, 9(29), 9761-9769. https://doi.org/10.1021/acssuschemeng.1c02051
  • [18] Huang, J., Zhao, M., Hao, Y., Li, D., Feng, J., Huang, F., & Wei, Q. (2021). Flexible, Stretchable, and Multifunctional Electrospun Polyurethane Mats with 0D-1D-2D Ternary Nanocomposite-Based Conductive Networks. Advanced Electronic Materials, 7(1), 2000840. https://doi.org/10.1002/aelm. 202000840
  • [19] Tang, X., Pionteck, J., Krause, B., Pötschke, P., & Voit, B. (2021). Highly Tunable Piezoresistive Behavior of Carbon Nanotube-Containing Conductive Polymer Blend Composites Prepared from Two Polymers Exhibiting Crystallization-Induced Phase Separation. ACS Applied Materials & Interfaces, 13(36), 43333-43347. https://doi.org/10.1021/acsami.1c10480
  • [20] Dai, X., Huang, L. B., Du, Y., Han, J., & Kong, J. (2021). Self-healing flexible strain sensors based on dynamically cross-linked conductive nanocomposites. Composites Communications, 24, 100654. https://doi.org/10.1016/j.coco.2021.100654
  • [21] Y Fang, Y., Xu, J., Gao, F., Du, X., Du, Z., Cheng, X., & Wang, H. (2021). Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor. Composites Part B: Engineering, 219, 108965. https://doi.org/10.1016/j.compositesb.2021.108965
  • [22] Hall, R. S., Desmoulin, G. T., & Milner, T. E. (2008). A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force. Journal of Biomechanics, 41(16), 3492-3495. http://dx.doi.org/10.1016/j.jbiomech.2008.09.031
  • [23] Komi, E. R., Roberts, J. R., & Rothberg, S. J. (2007). Evaluation of thin, flexible sensors for time-resolved grip force measurement. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(12), 1687-1699. https://doi.org/10.1243/09544062JMES700
  • [24] Dabling, J. G., Filatov, A., & Wheeler, J. W. (2012, August). Static and cyclic performance evaluation of sensors for human interface pressure measurement. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 162-165). IEEE. https://doi.org/10.1109/EMBC.2012.6345896
  • [25] Hollinger, A., & Wanderley, M. M. (2006, June). Evaluation of commercial force-sensing resistors. In Proceedings of the International Conference on New Interfaces for Musical Expression, Paris, France (pp. 4-8).
  • [26] Interlink Electronics. (2017). FSR400 Series Data Sheet [Datasheet PDS-10004-C]
  • [27] Peratech Inc. (2015). QTC SP200 Series Datasheet. Single Point Sensors [Datasheet V1.1]. https://www.peratech.com/assets/uploads/datasheets/Peratech-QTC-DataSheet-SP200-Series-Nov15.pdf
  • [28] Cruz-Pacheco, A. F., Paredes-Madrid, L., Orozco, J., Gómez-Cuaspud, J. A., Batista-Rodríguez, C. R., & Palacio Gomez, C. A. (2020). Assessing the influence of the sourcing voltage on polyaniline composites for stress sensing applications. Polymers, 12(5), 1164. https://doi.org/10.3390/polym12051164
  • [29] Ma, Z., Li, H., Jing, X., Liu, Y., & Mi, H. Y. (2021). Recent advancements in self-healing composite elastomers for flexible strain sensors: Materials, healing systems, and features. Sensors and Actuators A: Physical, 329, 112800. https://doi.org/10.1016/j.sna.2021.112800
  • [30] Kalantari, M., Dargahi, J., Kövecses, J., Mardasi, M. G., & Nouri, S. (2011). A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Transactions on Mechatronics, 17(3), 572-581. https://doi.org/10.1109/TMECH.2011.2108664
  • [31] Paredes-Madrid, L., Matute, A., & Palacio, C. (2019). Understanding the effect of sourcing voltage and driving circuit in the repeatability of measurements in force sensing resistors (FSRs). Measurement Science and Technology, 30(11), 115101. https://doi.org/10.1088/1361-6501/ab3307
  • [32] Simmons, J. G. (1963). Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. Journal of Applied Physics, 34(9), 2581-2590. http://dx.doi.org/10.1063/1.1729774
  • [33] Mikrajuddin, A., Shi, F. G., Kim, H. K., & Okuyama, K. (1999). Size-dependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits. Materials Science in Semiconductor Processing, 2(4), 321-327. https://doi.org/10.1016/S1369-8001(99)00036-0
  • [34] Chen, D., Cai, Y., & Huang, M. C. (2018). Customizable pressure sensor array: Design and evaluation. IEEE Sensors Journal, 18(15), 6337-6344. https://doi.org/10.1109/JSEN.2018.2832129
  • [35] Martínez-Barba, D. A., Martínez-Manuel, R., Daza-Benítez, L., & Vidal-Lesso, A. (2020). Development of self-calibrating sensor footwear and relevance of in-shoe characterization on accurate plantar pressure distribution measurements. IEEE Sensors Journal, 21(6), 8421-8431. https://doi.org/10.1109/JSEN.2020.3048611
  • [36] J Castellanos-Ramos, J., Navas-González, R., Macicior, H., Sikora, T., Ochoteco, E., & Vidal-Verdú, F. (2010). Tactile sensors based on conductive polymers. Microsystem Technologies, 16(5), 765-776. https://doi.org/10.1007/s00542-009-0958-3
  • [37] Hidalgo-López, J. A., Oballe-Peinado, Ó., Castellanos-Ramos, J., Sánchez-Durán, J. A., Fernández-Ramos, R., & Vidal-Verdú, F. (2017). High-accuracy readout electronics for piezoresistive tactile sensors. Sensors, 17(11), 2513. https://doi.org/10.3390/s17112513
  • [38] Lim, R., Choong, D. S. W., & Cheng, M. Y. (2020, December). Development of Pressure Sensing Array System for Retail Inventory Management. In 2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC) (pp. 185-188). IEEE. https://doi.org/10.1109/EPTC50525.2020.9315015
Uwagi
1. This work was funded by the Universidad Católica de Colombia through the Internal Call for Projects 2021, grant No CON0000456. The author Carlos Palacio acknowledges the Universidad Antonio Nariño under the project number 2021011-PI/UAN-2021-707GIFAM.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19a5d135-c2a0-4a50-841b-2e334c7faea5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.