PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study focused on the development of an environmentally friendly bioplastic material using sustainable seaweed-based biocomposites. Algal biomass (Gracilaria edulis) was processed and combined with starch, glycerol, glacial acetic acid, and chitosan to create flexible, homogenous biopolymer films. These films exhibited comparable physical properties to commercial plastics and retained their inherent colour post-processing. Spectroscopic analysis revealed intense UV-Vis peak points aligned with seaweed composition. Mechanical testing demonstrated adequate strength and flexibility, similar to starch-based bioplastics, with a tensile strength of 3.383 MPa and lower elongation strength of about 31.90 %. Material migration tests indicated a preference for water, suggesting suitability for low-moisture foods. The bioplastic film displayed notable biodegradability and compostability, showcasing its potential as a sustainable alternative for food packaging. This innovative contribution advances eco-friendly bioplastic material, addressing plastic pollution and promoting biocomposite use.
Rocznik
Strony
333--341
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Biotechnology, C/O Centre for Biomaterials & Environmental Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062
  • Department of Biotechnology, C/O Centre for Interfaces & Nanomaterials, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Department of Biotechnology, C/O Centre for Interfaces & Nanomaterials, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Department of Biotechnology, C/O Centre for Interfaces & Nanomaterials, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Amrita Centre for Wireless Networks and Applications (AmritaWNA), Amritapuri, India
  • The Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
  • Department of Biotechnology, C/O Centre for Interfaces & Nanomaterials, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Amrita School for Sustainable Futures (ASF), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, Kollam, Kerala, India
Bibliografia
  • [1] Liu W, Tsai SB, Wu CH, Shao X, Wacławek M. Corporate environmental management and sustainable operation: Theory and application. Ecol Chem Eng S. 2022;29:283-5. DOI: 10.2478/eces-2022-0020.
  • [2] Mainzer K. Renewable Energy and Sustainable Digitalisation: Challenges for Europe. Chem Did Ecol Metrol. 2022;27:5-23. DOI: 10.2478/cdem-2022-0003.
  • [3] Wacławek S. Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecol Chem Eng S. 2021;28:11-28. DOI: 10.2478/eces-2021-0002.
  • [4] Central Pollution Control Board Delhi. Annual Report 2019-20 on Implementation of Plastic Waste Management Rules, 2016. New Delhi: Central Pollution Control Board Delhi, India; 2021. Available from: www. https://cpcb.nic.in/rules-4/.
  • [5] Joshi R, Ahmed S. Status and challenges of municipal solid waste management in India: A review. Cogent Environ Sci. 2016;2:1139434. DOI: 10.1080/23311843.2016.1139434.
  • [6] Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH. The United States’ contribution of plastic waste to land and ocean. Sci Adv. 2020;6:eabd0288. DOI: 10.1126/sciadv.abd0288.
  • [7] Waclawek S, Fijalkowski M, Bardos P, Koci J, Scholz S, Hirsch P, et al. How can hybrid materials enable a circular economy? Ecol Chem Eng S. 2022;29(4):447-62. DOI: 10.2478/eces-2022-0030.
  • [8] Gluth A, Xu Z, Fifield LS, Yang B. Advancing biological processing for valorization of plastic wastes. Renew Sust Energy Rev. 2022;170:112966. DOI: 10.1016/j.rser.2022.112966.
  • [9] Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol Adv. 2008;26:246-65. DOI: 10.1016/j.biotechadv.2007.12.005.
  • [10] Lim C, Yusoff S, Ng CG, Lim PE, Ching YC. Bioplastic made from seaweed polysaccharides with green production methods. J Environ Chem Eng. 2021;9:105895. DOI: 10.1016/j.jece.2021.105895.
  • [11] Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. Environ Chem Lett. 2023;21:97-152. DOI: 10.1007/s10311-022-01520-y.
  • [12] Atiwesh G, Mikhael A, Parrish CC, Banoub J, Le TAT. Environmental impact of bioplastic use: A review. Heliyon. 2021;7:e07918. DOI: 10.1016/j.heliyon.2021.e07918.
  • [13] Sadeghizadeh-Yazdi J, Habibi M, Kamali AA, Banaei M. Application of edible and biodegradable starch-based films in food packaging: A systematic review and meta-analysis. Current Res Nutrition Food Sci J. 2019;7:624-37. DOI: 10.12944/CRNFSJ.7.3.03.
  • [14] Beulah P, Jinu U, Ghorbanpour M, Venkatachalam P. Chapter 14 - Green Engineered Chitosan Nanoparticles and Its Biomedical Applications - An Overview. In: Ghorbanpour M, Wani SH, editors. Advances in Phytonanotechnology. Academic Press; 2019. DOI: 10.1016/B978-0-12-815322-2.00015-8.
  • [15] Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Europ Polymer J. 2013;49:780-92. DOI: 10.1016/j.eurpolymj.2012.12.009.
  • [16] Scheirs J. Polymer Recycling: Science, Technology and Applications. Wiley 1998. pp 616. ISBN: 9780471970545. Available from: https://www.wiley.com/en-us/Polymer+Recycling%3A+Science%2C+Technology+and+Applications-p-9780471970545.
  • [17] Zhou H. Physico-chemical Properties of Bioplastics and its Application for Fresh-cut Fruits Packaging. Ph.D. Thesis. Hokkaido University, 2016. DOI: 10.14943/doctoral.k12258.
  • [18] Jegan J, Vijayaraghavan J, Bhagavathi Pushpa T, Sardhar Basha SJ. Application of seaweeds for the removal of cationic dye from aqueous solution. Desalin Water Treat. 2016;57:25812-21. DOI: 10.1080/19443994.2016.1151835.
  • [19] Marwan M, Indarti E, Darmadi D, Rinaldi W, Hamzah D, Rinaldi T. Production of triacetin by microwave assisted esterification of glycerol using activated natural zeolite. Bull Chem React Eng Catal. 2019;14:672. DOI: 10.9767/bcrec.14.3.4250.672-677.
  • [20] Drabczyk A, Kudłacik-Kramarczyk S, Głąb M, Kędzierska M, Jaromin A, Mierzwiński D, et al. Physicochemical investigations of chitosan-based hydrogels containing aloe vera designed for biomedical use. Materials. 2020;13:3073. DOI: 10.3390/ma13143073.
  • [21] Lomelí-Ramírez MG, Barrios-Guzmán AJ, García-Enriquez S, Rivera-Prado JDJ, Manríquez-González R. Chemical and mechanical evaluation of bio-composites based on thermoplastic starch and wood particles prepared by thermal compression. BioResources. 2014;9:2960-74. DOI: 10.15376/biores.9.2.2960-2974.
  • [22] Praiboon J, Chirapart A, Akakabe Y, Bhumibhamon O, Kajiwara T. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. ScienceAsia. 2006;32(s1):011. DOI: 10.2306/scienceasia1513-1874.2006.32(s1).011.
  • [23] Amin MdR, Chowdhury MA, Kowser MdA. Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon. 2019;5:e02009. DOI: 10.1016/j.heliyon.2019.e02009.
  • [24] Khodaei D, Álvarez C, Mullen AM. Biodegradable packaging materials from animal processing co-products and wastes: An overview. Polymers. 2021;13:2561. DOI: 10.3390/polym13152561.
  • [25] Samantaray PK, Little A, Wemyss AM, Iacovidou E, Wan C. Design and control of compostability in synthetic biopolyesters. ACS Sust Chem Eng. 2021;9:9151-64. DOI: 10.1021/acssuschemeng.1c01424.
  • [26] Samešová D, Poništ J, Hybská H, Veverková D. Assessment of biological degradability of the waste produced by food industry. Ecol Chem Eng S. 2021;28:339-54. DOI: 10.2478/eces-2021-0023.
  • [27] Wirth F, Goldani LZ. Epidemiology of Rhodotorula: An emerging pathogen. Interdiscip Perspect Infect Dis. 2012;2012:465717. DOI: 10.1155/2012/465717.
  • [28] van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 2011;5:173-83. DOI: 10.1038/ismej.2010.80.
  • [29] Al-Hatmi AMS, Meis JF, de Hoog GS. Fusarium: Molecular diversity and intrinsic drug resistance. PLoS Pathog. 2016;12:e1005464. DOI: 10.1371/journal.ppat.1005464.
  • [30] Vaverková M, Adamcová D, Kotovicová J, Toman F. Evaluation of biodegradability of plastics bags in composting conditions. Ecol Chem Eng S. 2014;21:45-57. DOI: 10.2478/eces-2014-0004.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-199f1943-5fc9-48ca-a361-2eeae6b389bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.