Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Annually, 1.5 billion tires—composed of up to 90% vulcanized rubber—are discarded worldwide. Due to its complex and cross-linked structure, vulcanized rubber is extremely difficult to recycle and reprocess. This study investigates the potential application of recycled rubber as a core material in sandwich composite structures. Given the potential use of these materials as structural elements, it is crucial to determine their operating stress limits. While design approaches in composite engineering typically rely on theoretical models and safety factors, the integration of additional testing methods enables more accurate insight into material degradation processes. Static tensile tests showed that the composite without rubber had a strength of approximately 120 MPa, whereas with the addition of 5% recycled rubber, a strength of approximately 100 MPa was achieved. Static tensile testing, conducted alongside acoustic emission (AE) monitoring, allows for identifying stress thresholds that correlate with increases in AE event counts, root mean square (RMS) values, or signal amplitude—parameters that signal structural changes within the composite during loading. The aim of this study was to establish allowable stress values for recycled rubber-based composites, considering different configurations of the rubber layer distribution using the AE method. Based on the read average values of the stresses at which damage is initiated in the composite materials, it is noticeable that despite the earlier values indicating better parameters of the K1 composite – 1 layer of rubber recyclate (64.8 MPa), comparable results are also obtained for the K3 – 3 layers of rubber recyclate (64 MPa) composite. Of the three tested materials, the K2 composite consisting of 2 layers of recyclate rubber is characterized by the lowest value (62.6 MPa).
Wydawca
Rocznik
Tom
Strony
65--79
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
autor
- Department of Engineering Sciences, Faculty of Marine Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
autor
- Department of Engineering Sciences, Faculty of Marine Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
autor
- Department of Marine Maintenance, Faculty of Marine Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
autor
- Department of Engineering Sciences, Faculty of Marine Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
Bibliografia
- 1. Fazli A., Rodrigue D., Waste rubber recycling: a review on the evolution and properties of thermoplastic elastomers, Materials (Basel). 2020 Feb; 13(3): 782.
- 2. Ramarad S., Khalid M., Ratnam C., Chuah A.L., Rashmi W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015; 72: 100–140. https://doi.org/10.1016/j.pmatsci.2015.02.004
- 3. Karger-Kocsis J., Mészáros L., Bárány T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. J. Mater. Sci. 2013; 48: 1–38. https://doi.org/10.1007/s10853-012-6564-2
- 4. Ikeda Y., Kato A., Kohjiya S., Nakajima Y. Rubber Science. Springer; Berlin/Heidelberg, Germany: 2018.
- 5. Fukumori K., Matsushita M., Okamoto H., Sato N., Suzuki Y., Takeuchi K. Recycling technology of tire rubber. JSAE Rev. 2002; 23: 259–264. https://doi.org/10.1016/S0389-4304(02)00173-X
- 6. Medina N.F., Garcia R., Hajirasouliha I., Pilakoutas K., Guadagnini M., Raffoul S. Composites with recycled rubber aggregates: Properties and opportunities in construction. Constr. Build. Mater. 2018; 188: 884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069
- 7. Amari T., Themelis N.J., Wernick I.K. Resource recovery from used rubber tires. Resour. Policy. 1999; 25: 179–188. https://doi.org/10.1016/S0301-4207(99)00025-2
- 8. Akbas, A.; Yuhana, N.Y. Recycling of rubber wastes as fuel and its additives. Recycling 2021; 6: 78. https://doi.org/10.3390/recycling6040078
- 9. Shah J., Jan M.R., Mabood F. Catalytic conversion of waste tyres into valuable hydrocarbons. J. Polym. Environ. 2007; 15: 207–211. https://doi.org/10.1007/s10924-007-0062-7
- 10. Fang Y., Zhan M., Wang Y. The status of recycling of waste rubber. Mater. Des. 2001; 22: 123–128. https://doi.org/10.1016/S0261-3069(00)00052-2; Adhikari B., De D., Maiti S. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000; 25: 909–948. https://doi.org/10.1016/S0079-6700(00)00020-4
- 11. Adhikari B., De D., Maiti S. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000; 25: 909–948. https://doi.org/10.1016/S0079-6700(00)00020-4
- 12. Singh N., Hui D., Singh R., Ahuja I., Feo L., Fraternali F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017; 115: 409–422. https://doi.org/10.1016/j.compositesb.2016.09.013
- 13. Chittella H., Yoon L.W., Ramarad S., Lai Z., Rubber waste management: A review on methods, mechanism, and prospects, Polymer Degradation and Stability, 2021; 194. https://doi.org/10.1016/j.polymdegradstab.2021.109761
- 14. Moreno T., Balasch A., Bartrolí R., Eljarrat E., A new look at rubber recycling and recreational surfaces: The inorganic and OPE chemistry of vulcanised elastomers used in playgrounds and sports facilities, Science of The Total Environment, 2023; 868. https://doi.org/10.1016/j.scitotenv.2023.161648
- 15. Abramczyk N., Żuk D., Panasiuk K., Analysis of the influence of adding rubber recyclate on the strength properties of epoxy-glass composites, Journal of KONBIN, 2023; 53: 1.
- 16. Abramczyk, N., Żuk, D., Panasiuk, K., Dyl, T., Influence of the type of layered distribution of rubber recyclate as an additive modifying the mechanical properties of epoxy-glass composites, Archives of Materials Science and Engineering, 2022; 118(2): 61–66.
- 17. Abramczyk, N., Żuk, D., Czech, A., Charchalis, A., Using statistical analysis to assess the impact of the addition of rubber recyclate on the strength properties of the epoxy-glass composite, Journal of Achievements in Materials and Manufacturing Engineering, 2023; 121(1): 77–92.
- 18. Żuk, D., Abramczyk, N., Charchalis, A., Analysis of the impact of rubber recyclate addition to the matrix on the strength properties of epoxy–glass composites, Polymers, 2023; 15(16): 3374.
- 19. Panasiuk, K., Dudzik, K., Hajdukiewicz, G., Abramczyk, N., Influence of gamma-phase aluminum oxide nanopowder and polyester–glass recyclate filler on the destruction process of composite materials reinforced by glass fiber, Polymers, 2024; 16(16): 2276.
- 20. Abramczyk, N., Drewing, S., Panasiuk, K., Żuk, D., Application of Statistical Methods to Accurately Assess the Effect of Gamma Aluminum Oxide Nanopowder on the Hardness of Composite Materials with Polyester–Glass Recyclate, Materials, 2022; 15(17): 5957.
- 21. Panasiuk, K., Dudzik, K., Hajdukiewicz, G., Acoustic emission as a method for analyzing changes and detecting damage in composite materials during loading, Archives of Acoustics, 2021; 46(3): 399–407.
- 22. Available online: https://krisko.lublin.pl/chemia/zywice-poliestrowe-polimal/maty-tkaniny-rowingi/maty-szklane (accessed on 15 March 2025).
- 23. Available online: https://orzelsa.com/pl/zaklad-produkcji-granulatu-gumowego/ (accesed on 15 March 2025).
- 24. Abramczyk, N., Hajdukiewicz, G., Charchalis, A., Żuk, D. Application of Kolmogorov–Sinai’s metric entropy for the analysis of mechanical properties in the bending test of epoxy–rubber–glass composites. Materials 2024; 17: 5079. https://doi.org/10.3390/ma17205079
- 25. PN-EN ISO 527-4:2000. Plastics - Determination of mechanical properties under static stretching - Test conditions for isotropic and orthotropic fiber-reinforced plastic composites.
- 26. Panasiuk, K., Dudzik, K. Determining the stages of deformation and destruction of composite materials in a static tensile test by acoustic emission. Materials 2022; 15: 313. https://doi.org/10.3390/ma15010313
- 27. PN-EN 1330-9:2017-09. Non-destructive testing - Terminology - Part 9: Terms used in acoustic emission testing.
- 28. PN-EN 13554: 2011E. Non-destructive testing - Acoustic emission - General rules.
- 29. PN-EN 15857: 2010E. Non-destructive testing - Acoustic emission - Testing of fiber-reinforced polymers - Specified methodology and general evaluation criteria.
- 30. Aggelis, D., Barkoula, N.-M., Matikas, T., Paipetis, A., Acoustic structural health monitoring of composite materials: Damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Composites Science and Technology, 2012; 72(10): 1127–1133. https://doi.org/10.1016/j.compscitech.2011.10.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-199b5d97-a563-43f4-8bf4-0486e019a194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.