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Abstract: Tensile deformation behavior of nuclear grade Austenitic Stainless Steel (SS) and its welded 

joints fabricated by Gas Tungsten Arc Welding (GTAW) and Activated Flux Gas Tungsten Arc Welding 

(AGTAW) processes were studied and correlated with relevant microstructural morphologies using  

Infrared Thermography (IRT) technique. The microstructure of base metal showed a complete austenite 

phase. GTAW Fusion Zone (FZ) exhibited both primary ferrite and primary austenite mode of 

solidification. Meantime, AGTAW FZ exhibited only primary austenite mode of solidification. A strain 

rate of 4.4x10-4 s-1 was used during the tensile test of the base metal and welded joints. The failure 

locations of the base metal, GTAW and AGTAW samples were noticed at the center of the gauge portion, 

the base metal side away from Fusion Line (FL) and Heat Affected Zone (HAZ) respectively. The 

temperature variations of the base metal and weld zones were recorded in the form of thermograms 

using the IR camera at the different stages of the tensile deformation. During deformation study, peak 

temperature of 39.2 °C, 38.8 °C and 34 °C were observed at the base metal, GTAW and AGTAW samples 

respectively. The lesser peak temperature of the AGTAW sample compared to the base metal and GTAW 

samples indicated that the AGTAW sample undergone lesser deformation. Moreover, tensile 

deformation behaviours of the base metal and welded joints were correlated with their microstructural 

morphologies using corresponding temperature curves. 
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Introduction 
The 316LN austenitic stainless steel is used as a significant structural material for the fabrication of 

nuclear reactors due to its good mechanical and corrosion resistance properties at high temperatures [1]. 

Currently, the joining of 316LN SS together is done using the Gas Tungsten Arc Welding (GTAW) process. 

The lack of weld pool penetration depth is the main drawback of the GTAW process. The achievement  

of the higher depth of penetration between SS plates was proved by some researchers by introducing active 

chemical elements (metal oxides such as SiO2, TiO2, Fe2 O3, Cr2O3, and CaO) on the SS plate before welding 

[2]. Particularly the SiO2 flux has shown an improved depth of penetration over Cr2O3, TiO2 and CaO on 316L 

grade austenitic stainless steel [3]. This particular method is named as Activated flux Gas Tungsten Arc 

Welding (AGTAW). The improved depth of penetration through the AGTAW process is achieved by the 

following key phenomenon viz: (i) Arc constriction (ii) Reverse Marangoni convection. Joining of 10 mm 

thickness 304LN plate was done in a single pass using the AGTAW process whereas joining of the same 

plate took seven passes by the conventional GTAW process [4]. The SS welded joints are experiencing  

different types of load conditions during their services. This phenomenon leads to deformation in that 

particular zone of the base metal as well as welded joints.  

The contactless Infrared Thermography (IRT) technique is taking a vital role in many engineering 

applications due to the accurate monitoring of temperature variations with fast inspection rates [5]. This is 

accomplished by the concept of Infrared radiations from a deforming material that is detected by the IR 
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camera, and the radiations are converted into temperature patterns (or) thermograms. These temperature 

patterns are stored and analyzed using computer workstations. Deformation distribution in the material 

and its severity is clearly assessed by the intensity of the temperature patterns. Successful assessment of 

material deformation is carried out on metals, polymers and composite materials using the IRT technique 

[6,7]. Deformation study of St3S and S355J2G3 steel grades were evaluated using the IRT technique under 

static and dynamic loading conditions [8]. Many researchers successfully used the IRT technique to study 

the deformation behavior of steels and stainless steels and its weldments during the tensile test [9÷13].  

Also, failure locations can be predicted in advance through the IRT technique using thermograms. In this 

experimental investigation, the IRT technique has been used to study the influence of microstructural 

morphologies on the tensile deformation behavior of the nuclear grade austenitic stainless steel and its 

welded joints. 

Materials and Methods  

Fabrication of Weld Joints 
Nuclear grade austenitic stainless steel 316LN was taken as Base Metal (BM) to study the tensile 

deformation behavior using the IR-Thermography technique. The chemical composition of 316LN 

austenitic stainless steel is given in table I. The base metal with a length of 300 mm, a width of 75 mm and a 

thickness of 3 mm was prepared to make the weld joints. Edge preparation was completed using the V 

groove and square butt joint configuration for GTAW and AGTAW joints respectively. The filler material 

316L which is having a similar chemical composition to the base metal was used for the fabrication of the 

GTAW joint. The chemical composition of the 316L filler metal is given in table I.  

 

Table I. Chemical composition of the base metal and filler material 

Material 
Weight % of elements 

C Cr Ni Mo Mn Si S P N Fe 

316LN (BM) 0.026 17.8 11.7 2.4 1.6 0.45 0.009 0.026 0.095 Balance 

316L (Filler) 0.019 18.5 12.2 2.3 1.57 0.47 0.003 0.024 ‒ Balance 

A paste like component was made by dissolving multi-compound activated flux (combinations of 

Cr2O3 (10÷20%), TiO2 (30÷50%), SiO2 (25÷40%), CuO (5÷15%), NiO (5÷15%)) in acetone [14]. This prepared 

paste form activated flux was applied to the square butt joint configuration before the fabrication process. 

Tungsten-2% Thorium electrode was used for the fabrication of the GTAW and AGTAW processes.  

The argon gas with the purity level of 99.995% was used as shielding gas during the fabrication of welded 

joints. The process parameter used to fabricate weld joints is given in table II.  

Table II. Process parameters used for welding processes 

Name of the Parameter GTAW 
AGTAW 

Pass-1 Pass-2 

Filler wire diameter (mm) 2.4 2.4 ‒ 

Electrode diameter (mm) 2 2 2 

Tip angle 60° 60° 60° 

Welding current I (A) 65 64 120 

Arc voltage V (V) 12  11  12.6  

Welding speed S (mm/min) 60 58 85 

Shielding gas  &  flow rate (l/min) Ar/10 Ar/10 Ar/10 

Heat input Q (kJ/mm) 0.78 0.79 1.067 

Microstructure 
Metallographic samples of the base metal and welded joints (transverse side) were polished up to  

3000 grit emery sheet. Further samples were polished using a 0.1 µm diamond paste to eliminate micro-

sized impurities. The etching process was done using a properly mixed solution named aquaregia  

(1:3 ratios of HNO3 to HCl) as per ASTM standard designation E407 [15]. Microstructural morphologies  

of the base metal and weld zones of the GTAW and AGTAW joints were captured using an Olympus 

BX51M Optical Microscope.  
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Infrared Thermography 
Figure 1 depicts the experimental setup of IRT during the tensile deformation study. The tensile test of 

the base metal and welded joints were done using Dartec, UK, 100KN hydraulic servo motor computer-

controlled Universal Testing Machine (UTM). The crosshead speed of 2 mm/min was maintained during 

the tensile test. Thermographic images were recorded by IR camera CEDIP Silver 420 with 25 m/°C 

temperature sensitivity. Figures 2a and 2b depict the base metal and welded joints before and after the 

tensile deformation study. Spray paint of black color was uniformly applied backside of all tensile 

specimens to improve surface emissivity during the experiment (Fig. 2a). 

 
Fig. 1. Experimental setup of IRT during the tensile test  

  
(a) (b) 

Fig. 2. Tensile Sample a) before the test b) after the test 

Results and discussion 

Microstructure  
The base metal microstructure comprised a complete austenite phase. Annealing twins (parallel) was 

observed clearly inside the austenite matrix and it is shown in figure 3. These annealing twins are formed 

during the fabrication process of the 316LN base plate (Hot rolling). The FZ of the GTAW process exhibited 

little complex microstructural morphology is shown in Figure 4a. This is attributed to repeated thermal 

cycles and usage of filler material during the GTAW process. Both primary austenite (AF) and primary 

ferrite (FA) mode of solidification occurred at the FZ of the GTAW process [16]. The presence of ferrite 

promoting element (Cr & Mo) in the filler material and fast cooling rate are predominant factors for the FA 

mode of solidification. A similar ferrite phase was identified on a 301L grade stainless steel fusion zone by 

Pulsed current TIG welding process [17]. Cellular structure and dendritic grain morphologies were 

observed at the center of the GTAW fusion zone. Adjacent to the cellular structure columnar grain growth 



 

 Welding Technology Review – www.pspaw.pl    Vol. 92(1) 2020   10 

was observed near to the fusion line (Fig. 4b). The center of the FZ and HAZ of the AGTAW process  

is shown in Figure 4c & d respectively. AGTAW fusion zone comprised a distribution of equiaxed grains  

at the center. Adjacent sides of the equiaxed morphology, the presence of columnar structure was 

identified. Also, some dendrites were noticed in between columnar grain growth. The grain growth was 

noticed at the HAZ of the AGTAW joint due to the slow cooling nature of this particular process. Similar 

grain growth at HAZ was observed around 200 µm size on austenitic stainless steel grade by the AGTAW 

process [18]. Also, the presence of δ-ferrite in the form of stringers clearly noticed at the HAZ of the 

AGTAW joint (Fig. 4d). This is attributed to the segregation of the ferrite promoting element (mainly Cr) at 

the HAZ during the solidification process. 

 
Fig. 3. Microstructure of 316LN Base Metal 

  

(a) (b) 

  
(c) (d) 

Fig. 4. Microstructural Morphologies: a) GTAW FZ b) GTAW HAZ c) AGTAW FZ d) AGTAW HAZ 
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Tensile properties 
For each welding and base metal, three samples were tested to evaluate tensile properties and the 

average values of Yield Strength (YS) and Ultimate Tensile Strength (UTS) are given in table III. The base 

metal sample failed at the center of the gauge portion. Whereas the failure of the GTAW and AGTAW 

sample occurred at the base metal side (away from the fusion line) and HAZ respectively. Grain growth  

at the HAZ of the AGTAW joint is the reason for the failure at this particular zone. GTAW sample has 

shown similar tensile results to the base metal since the failure occurred at the base metal side.       

Table III. Tensile properties of the base metal and welded joints (transverse) 

S.No 
Sample 

specification 

Crosshead 

speed 

(mm/min) 

Strain 

rate (s-1) 

YS 

(MPa) 

UTS 

(MPa) 

% of 

elongation 
Failure location 

1. BM 2 4.4 x10-4 319 616 64.14 Center of the Gauge portion 

2. GTAW 2 4.4 x10-4 311 609 52.8 Base metal side 

3. AGTAW 2 4.4 x10-4 298 601 49.2 HAZ 

Evolution of temperatures 
Figure 5a, 5b and 5c depicts the Thermographic images (thermograms) at different three stages during 

tensile deformation of the base metal, GTAW and AGTAW samples respectively. These thermograms are 

shown at different timings during the tensile testing. During the preferential stretching of samples  

at the gauge portions, the plastic zones are clearly observed and recorded in terms of thermograms (rose 

color in thermograms). Figure 5a', 5b' and 5c' depicts plots for the evolution of temperature distribution 

along the axial length of the base metal, GTAW and AGTAW samples respectively. These temperature 

plots were made as a function of the given strain rate. The peak temperatures points of the base metal  

and welded joints were recorded just before to the time of fracture. There are 39.4 °C, 38.8 °C and 34 °C for 

the base metal, GTAW and AGTAW samples respectively. These peak temperatures were identified exactly 

at the failure location of all samples using the axial temperature plots.  

Tensile behavior Vs peak temperature  
The evolution of peak temperature with respect to the time is described in the form of temperature 

curve and it is divided into four main stages based on the deformation behavior of any ductile material 

(Fig. 6). They are (I) Linear temperature drop stage (II) Temperature rise stage (III) Rapid temperature rise 

stage (IV) Final temperature decline stage [19,20]. At the stage-I temperature of the material drops in a 

linear manner due to the thermoelastic effect. This linear drop is continuing up to the yield point of the 

particular material. At stage-II, the temperature rises gradually due to the effect of plastic deformation [21].  

The conversion of existing plastic energy to heat energy during the plastic deformation of the metal is the 

key reason for this phenomenon. At stage-III the temperature profile increases rapidly with respect to the 

time. This is attributed to the plastic deformation influenced by the strain energy of the initiated crack tip 

during necking. At the stage-IV temperature of the fractured surface drops suddenly due to the action of 

heat conduction. 

Generally, tensile fracture of any ductile material happens by the following sequence: (i) formation of 

internal cavities due to plastic flow (ii) gradual growth of the internal cavities during plastic deformation  

(iii) eventually, fracture due to the coalescence of all cavities [22]. This sequence is strongly influenced  

by the grain size and microstructural morphology of the material which is undergoing the deformation.  

During the tensile experiment, the linear temperature drop stage ends at 207 s for the base metal, 203 s 

for the GTAW joint and 163 s for the AGTAW joint. At the end of this stage, the particular weld joint/Base 

metal reaches the yield point. The lesser time duration of the AGTAW joint indicated that it experienced 

lesser stress compared to the base metal and GTAW joint at the initial stage since the strain rate was 

constant. In the second stage, temperature increase gradually with the effect of plastic deformation. This 

gradual temperature rise was recorded up to 1570 s for the base metal 888 s for the GTAW and 562 s for the 

AGTAW joint. 

Just before the fracture, the base metal, GTAW and AGTAW samples exhibited peak temperatures of 

39.4 °C after 1690 secs (Fig. 7a), 38.8 °C after 930 secs (Fig. 8a) and 34 °C after 570 secs (Fig. 7a) respectively. 

The peak temperature of the GTAW sample very near to the base metal peak temperature value since  

it failed at the base metal side away from the fusion line. Meantime the lesser time for the failure of the 
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GTAW sample compared to the base metal is attributed to the existence of refined grains (fusion zone)  

at the gauge portion. Failure of the AGTAW sample occurred at the HAZ with the lesser peak temperature 

value and failure time compared to the base metal and GTAW sample. This is indicating that the weld zone 

(HAZ) of the AGTAW joint undergone lesser deformation compared to the base metal. 

 

 
 

(a) (a’) 

  

(b) (b’) 

  

(c) (c’) 

Fig. 5. Thermographic Images of a) the base metal, b) GTAW and c) AGTAW samples. Evolution of temperatures  

in axial length of a') base metal, b') GTAW and c') AGTAW samples 
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Fig. 6. Standard Temperature Curve (Evolution of peak temperature)  

Thermograms of the tensile failure sequence for the base metal, GTAW and AGTAW samples are  

correlated with corresponding tensile behavior and shown in Figures 7b, 8b and 9b respectively. Severe 

plastic deformation was clearly seen at the stage-III (during necking) using thermograms and this 

phenomenon is matching with the third stage of temperature curve by sudden temperature rise. 

  
(a) (b) 

Fig. 7. a) Evolution of peak temperature of the base metal during deformation with respect to time, b) Stress Vs Strain 

curve of base metal 

    
(a) (b) 

Fig. 8. a) Evolution of peak temperature in GTAW sample during deformation with respect to time, b) Stress Vs Strain 

curve for GTAW sample 
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(a) (b) 

Fig. 9. a) Evolution of peak temperature in AGTAW sample during deformation with respect to time, b) Stress Vs 

Strain curve for AGTAW sample 

Conclusions 
The following conclusions are derived regarding the correlation between tensile deformation behavior 

and microstructural morphology of nuclear grade austenitic stainless steel welded joints using infrared 

thermography technique. 

• During the transverse tensile test, GTAW samples failed at the base metal side away from the fusion 

line and showed similar tensile properties to the base metal. AGTAW sample failed at HAZ and 

showed the inferior tensile property as compared to the base metal and GTAW sample.  

• During the tensile deformation study, peak temperatures were recorded just before the time of 

fracture for the base metal and welded joints. This phenomenon is attributed to the conversion of 

available plastic energy into the heat energy at the severe plastic deformation zone. Moreover, failure 

locations were revealed in terms of temperature patterns in advance before the occurrence of fracture 

during the tensile test.  

• From IR-Thermography images, peak temperatures of 39.4 °C, 38.8 °C and 34 °C were observed at the 

base metal, GTAW and AGTAW samples. The GTAW joint shown similar results to the base metal 

since it has failed at the base metal side. But the AGTAW joint shown around 14 % lesser peak 

temperature as compared to the base metal and the failure was recorded at HAZ. This result 

indicating that the HAZ of the AGTAW joint has undergone lesser deformation as compared to the 

base metal. 
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