PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of natural and anthropogenic factors on grain size distribution along the southeastern Baltic spits

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of natural and anthropogenic factors on the distribution of sand grain size along sandy beaches is assessed, based on study of three spits of the southeastern Baltic Sea: the Curonian, Vistula and the Hel. 330 sand samples were collected from the beach and foredune at 1 km intervals. Our findings show that although the three spits have some characteristics in common, e.g. a predominance of fine- and medium-grained marine sand on their beaches and foredunes, the grain size distribution patterns of the recent sediments along these spits differ significantly. The key factors determining the grain size distribution include the dominant hydrometeorological regime, anthropogenic activity and geological framework. Trends in the mean grain size differentiation along the Vistula and Curonian spits directly correlate with the direction of the longshore sediment transport: as the distance from sources of the longshore sediment transport increases, the size of sand particles, both on the beach and the foredune, decreases. By contrast, on the Hel Spit, this pattern is disturbed in areas of hydrotechnical construction and artificial beach nourishment. Sand differentiation along the beach can also be predetermined by the geological framework, particularly in lithologically anomalous sections, such as the Juodkrantè settlement on the Curonian Spit.
Rocznik
Strony
375--384
Opis fizyczny
Bibliogr. 94 poz., rys., tab., wykr.
Twórcy
  • Nature Research Centre, Akademijos 2, Vilnius 08412, Lithuania
  • Nature Research Centre, Akademijos 2, Vilnius 08412, Lithuania
autor
  • Nature Research Centre, Akademijos 2, Vilnius 08412, Lithuania
Bibliografia
  • 1. Alsharhan, A.S., El-Sammak, A.A., 2004. Grain-size analysis and characterization of sedimentary environments of the United Arab Emirates coastal area. Journal of Coastal Research, 20: 464-477.
  • 2. Asselman, N.E.M., 1999. Grain size trends used to assess the effective discharge for floodplain sedimentation, River Waal, the Netherlands. Journal of Sedimentary Research, 69: 51-61.
  • 3. Babakov, A., 2010. Wind-driven currents and their impact on the morpho-lithology at the eastern shore of the Gulf of Gdansk. Archives of Hydro-Engineering and Environmental Mechanics, 57: 85-103.
  • 4. Badyukova, E.N., Zhindarev, L.A., Lukyanova, S.A., Solovieva, G.D., 2007. Geological structure the Curonian Spit (of the Baltic Sea) and its evolution history (revised). Oceanology, 47: 554-563.
  • 5. Badyukova, E.N., Zhindarev, L.A., Lukyanova, S.A., Solovieva, G.D., 2008. Barrier-lagoon systems in the south-east of the Baltic Sea. Okeanologiya, 48: 641-647.
  • 6. Badyukova, E.N., Zhindarev, L.A., Lukyanova, S.A., Solovieva, G.D., 2017. Large accumulative forms of relief on the southeastern coast of the Baltic Sea. Oceanology, 57: 580-588.
  • 7. Baraniecki, J., Racinowski, R., 1996. The application of graining parameters of the rubble from the lower part of the back-swash of the shore stream zone to the determination of evolution tendencies of the Wolin island coast. In: Lithodynamics of Seat shore (ed. Z. Meyer): 27-38. PAS, Politechnika Szczecińska, Szczecin.
  • 8. Barusseau, J.P., Braud, R., 2014. Grain-size components as markers of original and depositional processes in the coastal zone of the Golfe du Lion (Mediterranen Sea, France). Journal of Sedímentary Research, 84: 626-644.
  • 9. Basiński, T., 1995. Protection of the Hel Spit. Journal of Coastal Research, 22: 197-201.
  • 10. Blazhchishin, A.I., 1998. Anthropogenic influence on the sedimentation in the south-eastern Baltic area (in Russian with English summary). In: Problems of Investigation and Protection of Nature at the Curonian Spit (eds. V.M. Slobodyanik and A.P. Manukian): 68-86. ECAT, Kaliningrad.
  • 11. Blott, S.J., Pye, K., 2001. Gradistat: grain size distribution ant statistics package for the analysis of unconsolidated sediment. Earth Surface Processes and Landforms, 26: 1237-1248.
  • 12. Bogdanov, N.A. 2008. Ecological-lithodynamic approach: scientific foundations and methods of estimation of the territories state (in Russian). Ph.D. thesis, Russian State University I. Kanta, Kaliningrad.
  • 13. Bogdanov, N.A., Aibulatov, N.A., Sharakov, V.P., 1986. Stability level of a modern placer in the outer part of the marine shore zone (in Russian with English summary). Lithology and Mineral Resources, 20: 335-344.
  • 14. Boldyrev, V.L., Bobykina, V.P., 2008. Coasts of Vistula and Curonian Spits as transboundary territories: In: Transboundary Waters and Basins in the South-East Baltic (ed. B. Chubarenko): 225-236. Terra Baltica, Kaliningrad.
  • 15. Boniecka, H., Kaźmierczak, A., 2015. State of shore and backshore on the basis of monitoring results for selected Polish seashores. Bulletin of the Maritime Institute in Gdańsk, 30: 150-163.
  • 16. Cheng, P., Gao, S., Bokuniewicz, H., 2004. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis. Estuarine, Coastal and Shelf Science, 60: 203-212.
  • 17. Damušyté, A., 2011. Post-glacial geological history of the Lithuanian coastal area. Ph.D. thesis, Nature Research Centre, Vilnius.
  • 18. Du, X., Gama, C., Liu, J.T., Baptista, P., 2015. Sediment sources and transport pathway identification based on grain-size distributions on the SW coast of Portugal. Tertestrial Atmospheric and Oceanic Sciences, 26: 397-409.
  • 19. Edwards, A.C., 2001. Grain size and sorting in modern beach sands. Journal of Coastal Research, 17: 38-52.
  • 20. Fenster, M., Dolan, R., Smith, J.I.J., 2016. Grain-size distributions and coastal morphodynamics along the southern Maryland and Virginia barrier islands. Sedimentology, 63: 809-823.
  • 21. Furmańczyk, K., 1995. Coast changes of the Hel Spit over the last 40 years. Journal of Coastal Research, 22: 193-196.
  • 22. Furmańczyk, K., 2013. Poland. In: Coastal Erosion and Protection in Europe (eds. E. Pranzini and A. Williams): 81-95. Routledge.
  • 23. Furmańczyk, K., Musielak, S., 1999. Circulation systems of the coastal zone and their role in South Baltic morphodynamics of the coast. Quaternary Studies in Poland, Special Issue: 91-94.
  • 24. Furmańczyk, K., Musielak, S., 2015. Polish spits and barriers. Coastal Research Library, 12: 181-194.
  • 25. Gao, S., Collins, M., 1992. Net sediment transport patterns inferred from grain size trends, based on definition of “transport vectors”. Sedimentary Geology, 81: 47-60.
  • 26. Gao, S., Collins, M., 1994. Analysis of grain size trends, for defining sediment transport pathways in marine environments. Journal of Coastal Research, 10: 70-78.
  • 27. Gao, S., Collins, M.B., Lanckneus, J., De Moor, G., van Lancker, V., 1994. Grain size trends associated with net sediment transport patterns: an example from the Belgian continental shelf. Marine Geology, 121: 171-185.
  • 28. Górecka, I., 1995. Dynamics of the surface sediments at the sea-floor along the Vistula Spit shoreface. Geological Quarterly, 39 (2): 255-270.
  • 29. Gudelis, V., 1998. The Lithuanian offshore and coast of the Baltic Sea (in Lithuanian). Lithuanian Academy of Science, Vilnius.
  • 30. Gudelis, V., Kirlys, V., Močiekiené, S., 1977. Littoral drift regime and dynamics along the eastern coast of the Baltic Sea in the offshore zone of the Curonian Spit according to the data of 1956-1974 (in Russian with English summary). Lietuvos TSR Moksą Akademijos Darbai, B4: 123-128.
  • 31. Harris, M.S., Gayes, P.T., Kindinger, J.L., Flocks, J.G., Krantz, D.E., Donovan, P., 2005. Quaternary geomorphology and modern coastal development in response to an inherent geologic framework: an example from Charleston, South Carolina. Journal of Coastal Research, 21: 49-64.
  • 32. Hequette, A., Hemdane, Y., Anthony, E.J., 2008. Determination of sediment transport paths in macrotidal shoreface environments: a comparison of grain-size trend analysis with near-bed current measurements. Journal of Coastal Research, 24: 695-707.
  • 33. Homma, M., Sonu, C.J., 1963. Rhythmic pattern of longshore bars related to sediment characteristics. Proceedings of 8th International Conference on Coastal Engineering, ASCE: 248-278.
  • 34. Hupfer, P., 1979. Die Ostsee - kleines Meer mit Grossen Problemen. Teubner Verlagsgesellschaft, Leipzig.
  • 35. Jarmalavičius, D., Žilinskas, G., 2006. Peculiarities of sand sorting on the Lithuanian coast of the Baltic Sea. Geologija, 56: 36-42.
  • 36. Jarmalavičius, D., Satkănas, J., Žilinskas, G., Pupienis, D., 2012a. The influence of coastal morphology on wind velocity dynamics. Estonian Journal of Earth Sciences, 61: 120-130.
  • 37. Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2012b. Impact of Klaipéda port jetties reconstruction on adjacent sea coast dynamics. Journal of Environmental Engineering and Landscape Management, 20: 240-247.
  • 38. Jarmalavičius, D., Pupienis, D., Buynevich, I.V., Žilinskas, G., Fedorovič, J., 2015. Aeolian sand differentiation along the Curonian Spit Coast, Baltic Sea, Lithuania. The Proceedings of the Coastal Sediments 2015, World Scientific, San Diego: 1-10.
  • 39. Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2017a. Geologic framework as a factor controling coastal morphometry and dynamics. Curonian Spit, Lithuania. International Journal of Sediment Research, 32: 597-603.
  • 40. Jarmalavičius, D., Žilinskas, G., Pupienis, D., Kriaučiănienė, J., 2017b. Subaerial beach volume change on decadal time scale: the Lithuanian Baltic Sea coast. Zeitschrift für Geomorphologie, 61: 149-158.
  • 41. Jednorał, T. ed., 1996. Dynamics of sea and coastal zone in the Gulf of Gdańsk. Influence of the planned navigable channel in the Polish part of the Vistula Spit on changes of marine hydrodynamic processes on the seaward side of the Vistula Spit (in Polish). Publishers of the Maritime Institute in Gdańsk.
  • 42. Kairyté, M., Stevens, R.L., 2015. Composite methodology for interpreting sediment transport pathways from spatial trends in grain size: a case study of the Lithuanian coast. Sedimentology, 62: 681-696.
  • 43. Kirlys, V., 1968. Intensity and direction of sediment transport along the Baltic coast of the Curonian spit (in Russian with English summary). Lietuvos TSR Moksą Akademijos Darbai, B3 (54): 125-132.
  • 44. Knaps, R., 1965. Sediment Transport along the Eastern Baltic Sea Coasts (in Russian). Latgidroprom, Riga.
  • 45. Kobelyanskaya, J., Piekarek-Jankowska, H., Boldyrev, V.L., Bobykina, V.P., Stępniewski, P., 2009. The morphodynamics of the Vistula Spit seaward coast (Southern Baltic, Poland, Russia). Oceanological and Hydrobiological Studies, 38: 41-56.
  • 46. Kobelyanskaya, J., Bobykina, V.P., Piekarek-Jankowska, H., 2011. Morphological and lithodynamic conditions in the marine coastal zone of the Vistula Spit (Gulf of Gdansk, Baltic Sea). Oceanologia, 53: 1027-1043.
  • 47. Komar, P.D., Wang, C., 1984. Processes of selective grain transport and the formation of placers on beaches. The Journal of Geology, 92: 637-655.
  • 48. Kovaleva, A., Chubarenko, B., Pupienis, D., 2016. Grain size variability as an indicator of sediment transport alongshore the Curonian Spit (south-eastern Baltic Sea). Baltica, 29: 145-155.
  • 49. Krek, A., Stont, Z., Ulyanova, M., 2016. Alongshore bed load transport in the southeastern part of the Baltic Sea under changing hydrometeorological conditions. Regional Studies of Marine Science, 7: 81-87.
  • 50. Le Roux, J.P., 1994. An alternative approach to the identification of net sediment transport paths based on grain size trends. Sedimentary Geology, 94: 97-107.
  • 51. Le Roux, J.P., Rojas, E.M., 2007. Sediment transport patterns determined from grain-size parameters: overview and state of the art. Sedimentary Geology, 202: 473-488.
  • 52. Maillet, G.M., Poizot, E., Sabatier, F., Vella, C., Mear, Y., 2011. Pattern of sediment transport in a microtidal river mouth using geostatistical sediment-trend analysis. Journal of Sedimentary Research, 81: 138-152.
  • 53. Mallet, C., Howa, H.L., Garlan, T., Sottolichio, A., Le Hir, P., Michel, D., 2000. Utilisation of numerical and statistical techniques to describe sedimentary circulation patterns in the mouth of the Gironde estuary. Earth and Planetary Sciences, 331: 1-7.
  • 54. McCave, I.N., 1978. Grain size trends and transport along beaches: an example from eastern England. Marine Geology, 28: 43-51.
  • 55. McLaren, P., 1981. An interpretation of trends in grain size measures. Journal of Sedimentary Petrology, 51: 611-624.
  • 56. McLaren, P., 1984. The Whytecliff oil spill, British Columbia: sediment trends and oil movement on a beach. Current Research, Geological Survey of Canada Paper, 84-1A: 81-85.
  • 57. McLaren, P., Bowles, D., 1985. The effects of sediment transport on grain-size distribution. Journal of Sedimentary Petrology, 55: 457-470.
  • 58. Musielak, S., 1989. Uwagi dotyczące genezy Półwyspu Helskiego w świetle nowszych badań (in Polish). Studia i Materiały Oceanologiczne, 56: 311-321.
  • 59. Nordstrom, K.F., 1975. The use of grain size statistics to distinguish between high and moderate energy beach environments. Journal of Sedimentary Petrology, 47: 1287-1294.
  • 60. Nordstrom, K.F., 1989. Downdrift coarsening of beach foreshore sediments at tidal inlets: an example from the coast of New Jersey. Earth Surface Processes and Landforms, 14: 691-701.
  • 61. Ostrowski, R., Skaja, M., 2011. Zależność stabilności brzegów Półwyspu Helskiego od sztucznego zasilania (in Polish). Inżynieria Morska i Geotechnika, 6: 495-502.
  • 62. Ostrowski, R., Pruszak, Z., Skaja , M. , Szmytkiewicz , M. , 2010. Variability of hydrodynamic and lithodynamic coastal processes in the east part of the Gulf of Gdansk. Archives of Hydro-Engineering and Environmental Mechanics, 57: 139-153.
  • 63. Ostrowski, R., Pruszak, Z., Schönhofer, J., Szmytkiewicz, M., Szmytkiewicz, P., 2012. Influence of damaged groins on nourished seashore. Proceedings of Coastal Engineering, 33: 1-8.
  • 64. Ostrowski, R., Pruszak, Z., Babakov, A., 2014. Condition of south-eastern Baltic Sea shores and methods of protecting them. Archives of Hydro-Engineering and Environmental Mechanics, 61: 17-37.
  • 65. Pazdro, Z., 1948. Półwysep Hel i jego geneza (in Polish). Technika Morza i Wybrzeża, 1: 713.
  • 66. Pedreros, R., Howa, H.L., Michel, D., 1996. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology, 135: 35-49.
  • 67. Poizot, E., Anfuso, G., Mear, Y., Bellido, C., 2013. Confirmation of beach accretion by grain-size trend analysis: Camposoto beach, Cadiz, SW Spain. Geo-Marine Letters, 33: 263-272.
  • 68. Pupienis, D., Buynevich, I.V., Jarmalavičius, D., Žilinskas, G., Fedorovič, J., 2013. Regional distribution of heavy mineral concentrations along the Curonian Spit coast of Lithuania. Journal of Coastal Research,65: 1844-1849.
  • 69. Pupienis, D., Buynevich, I.V., Jarmalavičius, D., Žilinskas, G., Fedorovič, J., Ryabchuk, D., Kovaleva, O., Sergeev, A., Cichon-Pupienis, A., 2016. Density-lag anomaly patterns in backshore sands along a paraglacial barrier spit. Geophysical Research Abstracts Vol. 18, EGU2016-4242-1, 2016 EGU General Assembly 2016.
  • 70. Pupienis, D., Buynevich, I., Ryabchuk, D., Jarmalavičius, D., Žilinskas, G., Fedorovič, J., Kovaleva, O., Sergeev, A., Cichoń-Pupienis, A., 2017. Spatial patterns in heavy-mineral concentrations along the Curonian Spit coast, south-eastern Baltic Sea. Estuarine, Coastal and Shelf Science, 195: 41-50.
  • 71. Ríos, F., Cisternas, M., Le Roux, J.P., Correa, I., 2002. Seasonal sediment transport pathways in Lirquén Harbor, Chile, as inferred from grain size trends. Investigations Marinas, 30: 3-23.
  • 72. Rodionov, S.N., 2004. A sequential algorithm for testing climate regime shifts. Geophysical Research Letters, 31: L09204.
  • 73. Rosa, B., Wypych, K., 1979. O mierzejach wybrzeża południowego Bałtyku (in Polish). Peribalticum, 1: 31-44.
  • 74. Rucińska-Zjadacz, M., Rudowski, S., 2015. Morpholithodynamic conditions of the tip of the Hel Peninsula, the Baltic Sea. Oceanological and Hydrobiological Studies, 44: 181-192.
  • 75. Rudowski, S., Rucińska-Zjadacz, M., Wróblewski, P., Sitkiewicz, P., 2016 . Submarine landslides on the slope of a sandy barrier: a case study of the tip of the Hel Peninsula in the Southern Baltic. Geological Quarterly, 60 (2): 407-416.
  • 76. Sallenger, A.H., 1979. Inverse grading and hydraulic equivalence in grain-flow deposits. Journal of Sedimentary Petrology, 49: 443-562.
  • 77. Self, R.P., 1977. Longshore variation in beach sands, Nautla area, Veracruz, Mexico. Journal of Sedimentary Petrology, 47: 1437-1443.
  • 78. Sergeev, A., 2015. The history of geological development of the Curonian Spit in the Holocene and modern lithodynamic processes in the coastal zone (in Russian). Ph.D. thesis, A.P. Karpinsky Russian Geological Research Institute, St. Petersburg.
  • 79. Stapor, F.W., Tanner, W.F., 1975. Hydrodynamic implications of beach, beach ridge and dune grain size studies. Journal of Sedimentary Petrology, 45: 926-931.
  • 80. Subotowicz, W., 1995. Transformation of the cliff coast in Poland. Journal of Coastal Research, 22: 57-62.
  • 81. Szmytkiewicz, M., Zeidler, R.B., Różyński, G., Skaja, M., 1999. Modelling large-scale dynamics of Hel Peninsula. Proceedings of Coastal Engineering, 3: 2837-2850.
  • 82. Tomczak, A., 1995. Relief, geology and evolution of the Hel Spit. Journal of Coastal Research, 22: 181-185.
  • 83. Ulsts, V., 1998. Latvian coastal zone of the Baltic Sea (in Latvian). Valsts Geolog'ijas Dienests, Riga.
  • 84. Van Lancker, V., Lanckneus, J., Hearn, S., Hoekstra, P., Levoy, F., Miles, J., Moerkerke, G. , Monfort, O. , Whitehouse, R., 2004. Coastal and nearshore morphology, bedforms and sediment transport pathways at Teignmouth (UK). Continental Shelf Research, 24: 1171-1202.
  • 85. Visher, G.S., 1969. Grain size distribution and depositional processes. Journal of Sedimentary Petrology, 39: 1074-1106.
  • 86. Viška, M., Soomere, T., 2013. Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica, 26: 145-156.
  • 87. Walton, T.L., 1999. Shoreline rhythmic pattern analysis. Journal of Coastal Research, 15: 379-387.
  • 88. Zawadzka, E., 1996. Coastal zone dynamics during artificial nourishment. Coastal Engineering. Part IV: Coastal Processes and Sediment Transport, 2955-2968. American Society of Civil Engineers, New York.
  • 89. Zawadzka-Kahlau, E., 1999. Tendencje rozwojowe polskich brzegów Bałtyku Południowego (in Polish). Gdańskie Towarzystwo Naukowe, Gdańsk.
  • 90. Zhamoida, V.R., Ryabchuk, D.V., Kropatchev, Y.P., Kurennoy, D., Boldyrev, V.L. , Sivkov, V.V. , 2009. Recent sedimentation processes in the coastal zone of the Curonian Spit (Kaliningrad region, Baltic Sea). Zeitschrift der Deutschen Gesellschasft für Geowissenschaften, 160: 143-157.
  • 91. Žilinskas, G., Jarmalavičius, D., Minkevičius, V. , 2001 . Eolian processes on the marine coast (in Lithuanian with English summary). Nature Research Centre, Vilnius.
  • 92. Žilinskas, G., Pupienis, D., Jarmalavičius, D., 2010. Possibilities of regeneration of Palanga coastal zone. Journal of Environmental Engineering and Landscape Management, 18: 95-101.
  • 93. Žilinskas, G., Jarmalavičius, D., Pupienis, D., Fedorovič, J., 2016a. Methodological aspects of lithological anomalies identification in Spits coasts (in Lithuanian). In: Jăros ir krantų tyrimai 2016, (eds. R. Milerinė and E. Grinienė): 240-243. Klaipėda University Publishing House, Klaipėda.
  • 94. Žilinskas, G., Jarmalavičius, D., Damušyté, A., Pupienis, D., 2016b. Where there was Juodkrantė Strait during Post-Littorina time? (in Lithuanian). In: Jăros ir krantų tyrimai 2016 (eds. R. Milerinė and E. Grinienė): 235-239. Klaipėda University Publishing House, Klaipėda.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1992141a-9490-40ac-9347-05cfb3f2a96b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.