PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Radar Cross-section Reduction of Planar Absorbers Using Resistive FSS Unit Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper demonstrates the feasibility of reducingradar cross-section by employing resistive sheets or rings inthe conducting elements of an FSS unit cell. The idea behindthe approach in question is to create power-absorbing elementswhich may help reduce the power reflected from FSS surface.The investigated FSS unit cells have the form of double-closedrings and double-closed-split rings. A carbon paste, serving asthe resistive layer, was inserted in various regions within the unitcell. The CST Microwave Studio software was used to obtain thereflection coefficient. Specific dimensions and conductivity of thepaste were selected to ensure better performance. Simulationresults showed that the reflection coefficient may be reducedby8dB, to14dB, by using carbon paste with the conventionalcopper layer.
Rocznik
Tom
Strony
61--67
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Communication Engineering College of Electronic Engineering Ninevah University, Mosul, Iraq
  • Department of Communication Engineering College of Electronics Engineering Ninevah University, Mosul, Iraq
Bibliografia
  • [1] E.F. Knott, J.F. Schaeffer, and, M.T. Tulley, Radar cross section, SciTech Publishing, 2nd ed., 2004 (https://doi.org/ 10. 1049/SBRA026E).
  • [2] R.L. Fante and M.T. McCormack, “Reflection Properties of the Salisbury Screen”, IEEE Transactions on Antennas and Propagation, vol. 36, no. 10, pp. 1443– 1454, 1988 (https://doi.org/ 10. 1109/8.8632).
  • [3] H. Singh and R.M. Jha, Active Radar Cross Section Reduction: Theory and Applications, Cambridge: Cambridge University Press, 2015 (https://doi.org/10.1017/CBO9781316136171).
  • [4] K.J. Vinoy and R.M. Jha, Radar Absorbing Materials, Kluwer Academic Publisher: Dordrecht, 209 p., 1996 (ISBN: 9781461380658).
  • [5] F. Costa, S. Genovesi, and A. Monorchio, “A Chipless RFID Based on Multiresonant High-Impedance Surfaces”, IEEE Transactions on Microwaves Theory and Techniques, vol. 61, no. 1, pp. 146– 153, 2013 (https://doi.org/10.1109/TMTT.2012.2227777).
  • [6] D. Kundu, A. Mohan, and A. Chakrabarty, “Single-layer Wideband Microwave Absorber Using Array of Crossed Dipoles”, IEEE Antennas and Wireless Propagation Letters, vol. 15 , pp. 1589–1592 , 2016 (https://doi.org/10.1109/LAWP.2016.2517663).
  • [7] J. Song et al., “Broadband and Tunable Radar Absorber Based on Graphene Capacitor Integrated with Resistive Frequency-Selective Surface”, IEEE Transactions on Antennas and Propagation, vol. 68, no. 3 , pp. 2446– 2450, 2020 (https://doi.org/ 10.1109/TAP.2019.2943419).
  • [8] K.N. Rozanov, “Ultimate Thickness to Bandwidth Ratio of Radar Absorbers”, IEEE Transactions on Antennas and Propagation, vol. 48, no. 8, pp. 1230 –1234, 2000 (https://doi.org/ 10. 1109/ 8.884491).
  • [9] K.R. Jha, G. Mishra, and S.K. Sharma, “Design of a Compact Microwave Absorber Using Parameter Retrieval Method for Wireless Communication Applications”, IET Microwaves Antennas and Propagation, vol. 12, no. 6, pp. 977– 985, 2018 (https://doi.org/ 10.1049/iet-map.2017.0785).
  • [10] J. Chen, Y. Shang, and C. Liao, “Double-layer Circuit Analog Absorbers Based on Resistor-Loaded Square-Loop Arrays”, IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 4, pp. 591–595 , 2018 (https://doi.org/10.1109/LAWP.2018.2805333).
  • [11] Y. Han, W. Che, C. Christopoulos, Y. Xiong, and Y. Chang, “A Fast and Efficient Design Method for Circuit Analog Absorbers Consisting of Resistive Square-Loop Arrays”, IEEE Transactions on Electromagnetic Compatibility, vol. 58, no. 3, pp. 747–757, 2016 (https://doi.org/10.1109/TEMC.2016.2524553).
  • [12] B.A. Munk, “Frequency Selective Surfaces: Theory and Design”, Wiley, New York, 440 p., 2000 (https://doi.org/ 10. 1002/ 0471723770).
  • [13] N. Liu, X. Sheng, C. Zhang, and D. Guo, “Design of Frequency Selective Surface Structure with High Angular Stability for Radome Application”, IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 1, pp. 138– 141, 2018 (https://doi.org/ 10.1109/LAWP.2017.2778078).
  • [14] Y. Li et al., “Compact Miniaturized-Element Frequency Selective Surface”, Electronics Letters, vol. 51, no. 12, pp. 883– 884, 2015 (https://doi.org/10.1049/el.2015.0288).
  • [15] N. Choudhary, A. Sharma, and S. Yadav, “A Novel Band Stop Frequency Selective Surface for the Security of Quad Band Mobile Applications”, 2017 IEEE Applied Electromagnetics Conference (AEMC), Aurangabad, India, 2017 (https://doi.org/ 10.1109/AEMC.2017.8325687).
  • [16] N. Liu, X. Sheng, X. Gao, D. Guo, and R. Yang, “A Band-Pass Frequency Selective Surface with Wideband Rejection Characteristic”, 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, pp. 1286– 1288, 2018 (https://doi.org/ 10.23919/APMC.2018.8617503).
  • [17] M.B. Jasim and K.H. Sayidmarie, “Planar Absorbing FSS Unit Cells for Radar Cross-section Reduction”, IEEE 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies ( 3ICT), Sakheer, Bahrain, pp. 476 – 480, 2022 (https://doi.org/10.1109/3ICT56508.2022.9990893).
  • [18] Y. Li, M.E. Bialkowski, K.H. Sayidmarie, and N.V. Shuley, “ 81-Element Single-Layer Reflectarray with Double-Ring Phasing Elements for Wideband Applications”, 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, Canada, 2010 (https://doi.org/10.1109/APS.2010.5562103).
  • [19] K.H. Sayidmarie and T.A. Nagem, “Compact Dual-Band Dual-Omega Printed Monopole Antennas for WLAN Applications”, Progress In Electromagnetics Research B, vol. 1, pp. 313– 331, 2012 (https: //doi.org/10.13140/2.1.1195.5204).
  • [20] P. Munaga, S. Ghosh, S. Bhattacharyya, and K.V. Srivastava, “A Fractal-Based Compact Broadband Polarization Insensitive Metamaterial Absorber Using Lumped Resistors”, Microwave and Optical Technology Letters, vol. 58, no. 2, pp. 343– 347, 2016 (https: //doi.org/10.1002/mop.29571).
  • [21] W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A Miniaturized Metamaterial Absorber for Ultrahigh-Frequency RFID System”, IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 329– 332, 2017 (https://doi.org/10.1109/LAWP.2016.2574885).
  • [22] Q. Chen, M. Guo, Di Sang, and Y. Fu, “Polarization-Insensitive Frequency-Selective Rasorber Based on Square-Loop Element”, Progress in Electromagnetics Research M, vol. 79 , pp. 41 –49 , 2019 (https://doi.org/10.2528/PIERM18110607).
  • [23] Z. Shen, N. Kou, S. Yu, Z. Ding, and Z. Zhang, “Miniaturized Frequency Selective Rasorber Based on Meander-Lines Loaded Lumped Resistors and a Coupled Resonator Spatial Filter”, Progress in Electromagnetics Research M, vol. 90 , pp. 147–155, 2020 (https: //doi.org/10.2528/PIERM20010503).
  • [24] M. Qu, S. Sun, L. Deng, and S. Li, “Design of a Frequency-Selective Rasorber Based on Notch Structure”, IEEE Access, vol. 7, pp. 3704 –3711 , 2019 (https://doi.org/10.1109/ACCESS.2018.2886421).
  • [25] Z. Wang et al., “A High-Transmittance Frequency-Selective Rasorber Based on Dipole Arrays”, IEEE Access, vol. 6, pp. 31367– 31374, 2018 (https://doi.org/10.1109/ACCESS.2018.2843795).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-199071ea-2097-42d0-aafd-bcd870e873aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.