Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The detonation performances of TNT-, RDX-, HMX-, and RDX/AP-based aluminized explosives were examined through detonation experiments. The detonation pressure, velocity, and heat of detonation of the four groups of aluminized explosives were measured. Reliability verification was conducted for the experimental results and for those calculated with an empirical formula and the KHT code. The test results on detonation pressures and velocities were in good agreement with the predicted values when aluminum (Al) particles were considered inert. The experimental heat of detonation values exhibited good consistency with the predicted values when a certain proportion of Al particles was active. Ammonium perchlorate (AP) can effectively reduce the detonation pressure and improve the heat of detonation for the RDX/AP-based aluminized explosive. A comparison of the current test results and literature data shows that errors may exist in early test data. The test data presented in this study allow for an improved understanding of the detonation performance of the four groups of aluminized explosives.
Rocznik
Tom
Strony
903--915
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
Bibliografia
- [1] Gogulya M.F., Makhov M.N., Dolgoborodov A.Y., Brazhnikov M.A., Arkhipov V.I., Shchetinin V.G., Mechanical Sensitivity and Detonation Parameters of Aluminized Explosives, Combust. Explos. Shock Waves (Engl. Transl.), 2004, 40(4), 445-457.
- [2] Pourmortazavi S.M., Hajimirsadeghi S.S., Kohsari I., Fathollah M.I, Hosseini S.G., Thermal Decomposition of Pyrotechnic Mixtures Containing Either Aluminum or Magnesium Powder as Fuel, Fuel, 2008, 87(2), 244-251.
- [3] Dobratz B. M., LLNL Explosives Handbook, DE85015961, 1981; ISBN 9994811029.
- [4] Hall T.N., Holden, J.R, Navy Explosives Handbook, NSWC MP 88-116, 1988.
- [5] Keshavarz M.H., Prediction of Detonation Performance of CHNO and CHNOAl Explosives through Molecular Structure, J. Hazard. Mater., 2009, 166, 1296-1301.
- [6] Wardle R., Lee K., Akester J., Braithwaite P., Effects of Very Small Particle Size on Processing and Safety Properties of Energetic Formulations, Materials Research Society Symposium Proceedings., 2004, 800, AA1.2.1-AA1.2.11.
- [7] Trzcinski W.A., Cudziło S., Szymanczyk L., Studies of Detonation Characteristics of Aluminum Enriched RDX Mixtures, Propellants Explos. Pyrotech., 2007, 32(5), 392-400.
- [8] Ritter H., Braun S., High Explosives Containing Ultrafine Aluminum ALEX, Propellants Explos. Pyrotech., 2001, 26, 311-314.
- [9] Muravyev N., Frolov Y., Pivkina A., Monogarov K., Ordzhonikidze O., Bushmarinov O., Korlyukov A., Influence of Particle Size and Mixing Technology on Combustion of HMX/Al Compositions, Propellants Explos. Pyrotech., 2010, 35, 226-232.
- [10] Xiang D.L., Rong J.L., Li J., Effect of Al/O Ratio on the Detonation Performance and Underwater Explosion of HMX-based Aluminized Explosives, Propellants Explos. Pyrotech., 2014, 39, 65-73.
- [11] Zhu Y.L., Huang H., Ren H., Jiao Q.J., Influence of Aluminum Particle Size on Thermal Decomposition of RDX, J. Energ. Mater., 2013, 31, 178-191.
- [12] Cao W., He Z.Q., Chen W.H., Measurement of Afterburning Effect of Underoxidized Explosives by Underwater Explosion Method, J. Energ. Mater., 2015, 33, 116-124.
- [13] Cowperthwaite M., Zwisler W.H., TIGER Computer Program Documentation, Stanford Research Institute, SRI Publication Number 2106, 1973.
- [14] Nichols A.L., Ree F.H., CHEQ 2.0 User’s Manual, UCRL-MA-106754, Lawrence Livermore National Laboratory, Livermore, CA, 1990.
- [15] Mader C.L., Detonation Properties of Condensed Explosives Computed Using the Becker-Kistiakowsky-Wilson Equation of State, Los Alamos Scientific Laboratory Report LA-2900, New Mexico, 1963.
- [16] Fried L.E., Howard W.M., Souers P.C., CHEETAH 2.0 User’s Manual, Lawrence Livermore National Laboratory, Livermore, CA, 1998.
- [17] Mader C.L, Detonation Properties of Condensed Explosives Computed Using the Becker-Kistiakowsky-Wilson Equation of State, Los Alamos Scientific Laboratory Report LA-2900, New Mexico, 1963.
- [18] Cowperthwaite M., Zwisler W.H., The JCZ Equations of State for Detonation Products and Their Incorporation into the TIGER Code, 6th Symp. Int. Detonation, Coronado, CA, 1976, 162-172.
- [19] Tanaka K., Detonation Properties of High Explosives Calculated by Revised Kihara-Hikita Equation of State, 8th Symp. Int. Detonation, Albuquerque, NM, 1985, 548-557.
- [20] Keshavarz M.H., Mofrad R.T., Poor K.E., Shokrollahi A., Zali A., Yousefi M.H., Determination of Performance of Non-ideal Aluminized Explosives, J. Hazard. Mater., 2006, 137, 83-87.
- [21] Keshavarz M.H., Prediction of Detonation Performance of CHNO and CHNOAl Explosives through Molecular Structure, J. Hazard. Mater., 2009, 166, 1296-1301.
- [22] Keshavarz M.H., Zamani A., A Simple and Reliable Method for Predicting the Detonation Velocity of CHNOFCl and Aluminized Explosives, Cent. Eur. J. Energ. Mater., 2015, 12(1), 13-33.
- [23] Keshavarz M.H., Kamalvand M., Jafari M., Zamani A., An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives, Cent. Eur. J. Energ. Mater., 2016 13(2), 381-396.
- [24] Pei H.B., Nie J.X., Jiao Q.J., Study on the Detonation Parameters of Aluminized Explosives Based on a Disequilibrium Multiphase Model, Cent. Eur. J. Energ. Mater., 2014, 11(4), 491-500.
- [25] Petel O.E., Mack D., Higgins A.J., Turcotte R., Chan S.K., Minimum Propagation Diameter and Thickness of High Explosives, J. Loss. Prevent. Proc., 2007, 20, 578-583.
- [26] Keshavarz M.H., Motamedoshariati H., Moghayadnia R., Nazari H.R., Azarniamehraban J., A New Computer Code to Evaluate Detonation Performance of High Explosives and Their Thermochemical Properties, Part I, J. Hazard. Mater., 2009, 172, 1218-1228.
- [27] Deiter J.S., Wilmot G.B., Detonation Chemistry of Underwater Explosives, 10th Symp. Int. Detonation, Boston, MA, 1993, 619-627.
- [28] Hobbs M.L., Baer M.R., Calibrating the BKW-EOS with a Large Product Species Database and Measured C-J Properties, 10th Symp. Int. Detonation, Boston, MA, 1993, 409-418.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-198f94f7-f4cf-428c-87ab-6deef65999e3