Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Efekt składu topnika na wydłużenie procentowe i wytrzymałość na rozciąganie spawów przy spawaniu łukiem krytym
Języki publikacji
Abstrakty
This experimental study reveals the effects of CaF2, FeMn and NiO additions to the base fluxes on tensile strength and percentage elongation of the weld metal. The aim of this study is to develop suitable flux for mild steel for high tensile strength, impact strength and ductility. Bead on plate welds were made using submerged arc welding process. Mathematical model for percentage elongation and UTS of mild steel welds were made. The elements transfer to the welds have been correlated with the above mechanical performance characteristics. The effect of oxygen content on weld elongation and UTS also has been deduced. This study shows that CaF2 and NiO are the significant factors for tensile strength while FeMn is not significant for tensile strength. However, for elongation besides CaF2, the interaction of CaF2 and FeMn was also found significant. The effects of basicity index of the flux and carbon equivalent of the welds on tensile strength and percentage elongation of the welds have also been evaluated.
W studium eksperymentalnym, przedstawionym w pracy, pokazano wpływ domieszek CaF2, FeMn i NiO do podstawowego składu topnika na wytrzymałość na rozciąganie i procentowe wydłużenie metalu spawu. Celem studium było opracowanie topnika odpowiedniego dla stali niskowęglowej, który zapewnia wysoką wytrzymałość na rozciąganie, wytrzymałość na udary i plastyczność. Ściegi spawów wykonano metodą spawania łukiem krytym. Opracowano model matematyczny wydłużenia procentowego i wytrzymałości na rozciąganie (UTS) dla spawów ze stali niskowęglowej. Zbadano korelację między wymienionymi charakterystykami mechanicznymi a transferem pierwiastków do spawu. Wyznaczono także wpływ zawartości tlenu na wydłużenie spawu i ostateczną wytrzymałość na rozciąganie. W badaniach doświadczalnych wykazano, że domieszki CaF2 oraz NiO są istotnymi czynnikami wpływającymi na wytrzymałość na rozciąganie, podczas gdy domieszka FeMn nie ma istotnego wpływu. Oceniono także wpływ współczynnika zasadowości topnika i równoważnika węglowego spawu na wydłużenie procentowe spawu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
337--354
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab.
Twórcy
autor
- Maharaja Surajmal Institute of Technology, Janakpuri, New Delhi, India
autor
- Jamia Milia Islamia University, Jamia Nagar, New Delhi, India
autor
- Jamia Milia Islamia University, Jamia Nagar, New Delhi, India
autor
- Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
autor
- Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
Bibliografia
- [1] R.S. Parmar. Welding Processes and Technology. Khanna Publisher, New Delhi, 1992.
- [2] N. Murugan and V. Gunaraj. Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes. Journal of Materials Processing Technology, 168(3):478–487, 2005.
- [3] P.T. Houldcroft. Submerged-arc welding. Woodhead Publishing, Cambridge, 1989.
- [4] P. Kanjilal, T.K. Pal, and S.K. Majumdar. Combined effect of flux and welding parameters on chemical composition and mechanical properties of submerged arc weld metal. Journal of Materials Processing Technology, 171(2):223–231, 2006.
- [5] P. Kanjilal, T.K Pal, and S.K. Majumdar. Prediction of element transfer in submerged arc welding. Welding Journal, 86(5):135–146, 2007.
- [6] P. Kanjilal, S.K. Majumdar, and T.K. Pal. Prediction of acicular ferrite from flux ingredients in submerged arc weld metal of C-Mn steel. ISIJ International, 45(6):876–885, 2005.
- [7] N.D. Pandey, A. Bharti, and S.R. Gupta. Effect of submerged arc welding parameters and fluxes on element transfer behaviour and weld-metal chemistry. Journal of Materials Processing Technology, 40(1):195–211, 1994.
- [8] J.H. Palm. How fluxes determine the metallurgical properties of SAW. Welding Research Supplement, pages 358–360, 1972.
- [9] A.R. Bell. Properties of HY-130 weldment produced by weld pool filler synthesis. Master Thesis, Ohio State University, Ohio, 1985.
- [10] O.P. Modi, N. Deshmukh, D.P. Mondal, A.K. Jha, A.H. Yegneswaran, and H.K. Khaira. Effect of interlamellar spacing on the mechanical properties of 0.65% carbon steel. Materials Characterization, 46(5):347–352, 2001.
- [11] O. Grong, T.A. Siewert, G.P. Martins, and D.L. Olson. A model for the silicon-manganese deoxidation of steel weld metals. Metallurgical and Materials Transactions A, 17(10):1797–1807, 1986.
- [12] D.J. Abson and R.J. Pargeter. Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C-Mn steel fabrications. International Metals Reviews, 31(1):141–196, 1986.
- [13] N.N. Potapov. Oxygen effect on low-alloy steel weld metal properties. Welding Research Supplement, pages 367–370, 1993.
- [14] C.S. Chai and T.W. Eagar. Slag metal reactions in binary CaF2–metal oxide welding fluxes. Welding Journal, 61(7):229–232, 1982.
- [15] A. Joarder, S.C. Saha, and A.K. Ghose. Study of submerged arc weld metal and heat-affected zone microstructures of a plain carbon steel. Welding Research Supplement, 22(6):141–146, 1991.
- [16] J.F. Lancaster. The metallurgy of welding. Allen and Unwin, London, 4 edition, 1987.
- [17] K. Easterling. Introduction to the physical metallurgy of welding. Butterworth-Heinemann, London, 1992.
- [18] L.-E. Svensson. Control of microstructures and properties in steel arc welds, volume 1. CRC Press, Boca Raton, 1993.
- [19] V. Kumar. Modeling of weld bead geometry and shape relationships in submerged arc welding using developed fluxes. Jordan Journal of Mechanical and Industrial Engineering, 5(5):461–470, 2011.
- [20] S. Jindal. Development of submerged arc welding fluxes for welding of structural steels. Ph.D Thesis, MMU, Ambala, Haryana, India, 2013.
- [21] T.W. Eagar. Sources of weld metal oxygen contamination during submerged arc welding. Welding Journal, 57(3):76–80, 1978.
- [22] K. Bang, C. Park, H. Jung, and J. Lee. Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding. Metals and Materials International, 15(3):471–477, 2009.
- [23] E. Surian and T. Boniszewski. Effect of manganese and type of current on the properties and microstructure of all-weld-metal deposited with E7016-1 electrodes. Welding Research Supplement, 71(9):348–363, 1992.
- [24] A.M. Paniagua-Mercado, Víctor M. López-Hirata, A.F. Méndez-Sánchez, and M.L. Saucedo-Muñoz. Effect of active and nonactive fluxes on the mechanical properties and microstructure in submerged-arc welds of A-36 steel plates. Materials and Manufacturing Processes, 22(3):295–297, 2007.
- [25] G.M. Evans. Effect of manganese on weld microstructure and properties of all-weld-metal deposits. Welding Journal, 59(3):67–75, 1980.
- [26] F.S. Jaberi and A.H. Kokabi. Influence of nickel and manganese on microstructure and mechanical properties of shielded metal arc-welded API-X80 steel. Journal of Materials Engineering and Performance, 21(7):1447–1454, 2012.
- [27] T. Boniszewski. Self-shielded arc welding. Elsevier, 1992.
- [28] R.D. Stout and W.D. Doty. Weldability of steels. Welding Research Council, New York, 3 edition, 1978.
- [29] A. Ghosh. Secondary steelmaking: principles and applications. CRC Press, Boca Raton, 2000.
- [30] A. Nicholoson and T. Gladman. Nonmetallic inclusion and development in secondary steel making. Iron Making Steel Making, 13(2):53–69, 1986.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-198df5ca-2298-4ad8-ad43-6dacf17ae2f6