PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Power of Various Types of Induction Furnaces on the Shape of the Metal Bath Surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work shows the results of examinations conducted to ascertain the influence of the working power of a vacuum induction crucible furnace (ICF) and a furnace with a cold crucible(CCF), on the surface area of liquid Al-Zn alloy molten within these devices. It was determined that the increase of the value of this parameter causes the increase of the liquid alloys surface area. In the case of smelting alloy inside a crucible furnace the increase of power from 8 to 22 kW causes the increase of liquid alloy surface from 88 to 155 cm2. For a furnace with a cold crucible, the power increase from 70 to 130 kW causes the increase of the alloy surface from 280 to 330,3 cm2. For all power values a larger increase in surface area was observed in crucible furnaces (around two times). In cases of cold crucible furnaces, this increase was around 20%. Additionally, based on the examination results the way in which the surface area of liquid alloy can intensify the undesirable process of zinc fuming away, was discussed. It has been demonstrated that the process of zinc elimination from the examined alloy is more intensive while using a cold crucible induction furnace.
Twórcy
  • Faculty of Materials Science, Department of Industrial Informatics, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland
  • Department of Testing and Certification "ZETOM", Ks. Herberta Bednorza 17, 40-384 Katowice, Poland
  • Faculty of Materials Science, Department of Metallurgy and Recycling, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Wecki B. Analysis of the influence of the contact area size between the liquid metal phase and the gas phase on the efficiency of the metal refining process in induction crucible furnaces. PhD Dissertation Gliwice 2018.
  • 2. Deng H., Dong J., Boi F., Saunders T., Hu C., Grasso S. 2020. Magnetic Field Generated during Electric Current Assisted Sintering: From Health and Safety Issues to Lorentz Force Effects. Metals. 10: 1653.
  • 3. Smalcerz A., Przylucki R. 2013. Electromagnetic field analysis of inductor – robot-workpiece system. Metalurgija. 52: 223–226.
  • 4. Niklewicz M., Smalcerz A. 2010. Application of three-coil cylindrical inductor in induction heating of gears. Electrical Review. 86: 333–335.
  • 5. Niklewicz M., Smalcerz A. 2008. Estimation of system geometry and inductor frequency importance in induction hardening process of gears. Electrical Review. 84: 219–224.
  • 6. Biesuz M., Saunders T., Ke D., Reece J.M., Hu C., Grasso S. 2021. A review of electromagnetic processing of materials (EPM): Heating, sintering, joining and forming. Journal of Materials Science & Technology. 69: 239–2722020.
  • 7. Gombert D., Richardson J., Aloy A., Delbert D. 2002. Cold-crucible design parameters for next generation HLW melters. WM’02 Conference Tucson.
  • 8. Vogt M., Bernier F., Mühlbauer A., Blum M., Jarczyk, G. 2000. Experimental investigation of temperature field and energy flows in induction furnace with cold crucible and a practical application of the results. Proc. Int. Conf. Electromagnetic Processing of Materials EPM 2000 Japan.
  • 9. Baake E., Nacke B., Bernier F., Vogt M., Mühlbauer A., Blum, M. 2001. Experimental and numerical investigations of the temperature field and melt flow in the induction furnace with cold crucible. Proc. Int. Sem. on Heating by Internal Sources HIS.
  • 10. Lavers J.D. et al. 1973. Current distribution, forces and circulation in the coreless furnace, IEEE Transactions on Industry Applications. 1(9).
  • 11. Bojarevics V., Djambazov G., Harding R., Pericleous K., Wickins M. 2002. Investigation of the cold crucible melting, Process: Experimental and Numerical Study, Proc. Fifth Int. pamir Conf. on Fundamental and Applied MHD. 2 II – 77.
  • 12. Delage D., Ernst R., Driole J. 1982. Induction melting in a cold crucible, Proc. Symp. IUTAM, Cambridge. 108.
  • 13. Gagnoud A., Etay J., Garnier M. 1988. The levitation melting process using cold crucible technique. ISIJ international. 28: 38.
  • 14. Umbrashko A., Baake E., Nacke B., Kirpo M., Jakovics A. 2005. Improvement of the cold crucible melting process using LES modelling, Proc. 15th Riga and 6th Int. Conf. on Fundamental and Applied MHD.
  • 15. Szala M., Beer-Lech K., Gancarczyk K., Kilic O.B., Pedrak P., Ozer A., Skic A. Microstructural characterization of Co-Cr-Mo casting dental alloys. Advances in Science and Technology – Research Journal. 2017, 11. 76–82.
  • 16. Naprstkova N., Kraus P., Cais J., Stancekova D., Miturska I. 2018. Analyses of calcium influence on the AlSi9CuMnNi alloy. Advances in Science and Technology – Research Journal. 12: 32–38.
  • 17. Smalcerz A. Oleksiak B., Siwiec G. 2015. The influence crucible arrangement on the electrical efficiency of the cold crucible induction furnace. Archives of Metallurgy and Materials. 60.
  • 18. Golak S., Przyłucki R., Smołka J., Buliński P., Ciepliński P. 2018. Influence of a cold crucible geometry parameters on electrical efficiency. International Journal of Applied Electromagnetics and Mechanics. 56: 165–172.
  • 19. Schieber D. 1986. Electromagnetic induction phenomena. Springer. Berlin.
  • 20. Song J.H., Min B.T., Kim J. H. Kim H.W. Hong S.W., Chung S.H. 2005. An electromagnetic and thermal analysis of a cold crucible melting, International Communications in Heat and Mass Transfer. 32: 1325–1336.
  • 21. Gou J., Liu Y., Su Y., Ding H., Liu G., Jia J. 2000. Evaporation behaviour of aluminum during the cold crucible induction skull melting of titanium aluminum alloys. Metallurgical and Materials Transactions B. 31B: 837–844.
  • 22. Spitans S., Jakovics A., Baake E., Nacke B. 2011. Numerical modelling of free surface dynamics of melt in an alternate electromagnetic field, Magnetohydrodynamics. 47: 385–397.
  • 23. Urzedowski A., Wojcicka-Migasiuk D.,Buraczynska B. 2020. Visual Effects of Surface Emissivity in Thermal Imaging. Advances in Science and Technology – Research Journal. 14. 215–222.
  • 24. Golak S., Przylucki R., Barglik J. 2014. Determination of a mass transfer area during metal melting in a vacuum induction furnace. Archives of Metallurgy and Materials. 59: 287–292.
  • 25. Jinjie G., Jun J., Yuan S.L., Guizhong L., Yanqing S., Hongsheng D. 2000. Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys. Metallurgical and Materials Transactions B. 31B: 837–844.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-198c21f8-faac-419f-b903-b8c9c442a6b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.