Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The supervision of OHS conditions (working conditions and the realization of work tasks) is one of the basic obligations of the employer. The number and variety of describing elements (and thus being subject to assessment) means that synthetic measures (measures that are one-dimensional images of complex phenomena) are more and more frequently applied to solve problems of that type. Although the methods of multivariate statistics used for this purpose differ in the way they treat assessment criteria (defining mutual dependency thresholds, unifying the field of compared criteria), the final effect of their application always offers the option to replace the entire set of features describing a given object with one variable (aggregate). The article presents a potential applicability of one of the so-called discrete multi-criteria decision-making methods (Simple Additive Weighting), which allows to determine a linear combination of normalized elements of the decision matrix and the elements of weight vector. As part of the article, the working conditions at 5 workstations were assessed (a miner’s workstation in 5 underground mine workings being excavated), taking into account 8 assessment criteria (6 were cost criteria and 2 – criteria of qualitative character). In effect of the application of the Simple Additive Weighting method, we could determine the ranking vector R, which allowed to order the examined objects and to carry out a comprehensive assessment of OSH conditions occurring in them.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
14--22
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
autor
- Silesian University of Technology, Poland
Bibliografia
- 1. Afshari, A., Mojahed M. and Yusuff R. (2010). Simple Additive Weighting approach to personnel selection problem. International Journal of Innovation and Technology Management, 1(5), pp. 511-515.
- 2. Alinezhad, A., Sarrafha, K. and Amini, A. (2014). Sensitivity analysis of SAW technique: the impact of changing the decision making matrix elements on the final ranking of alternatives. Iranian Journal of Operations Research, 5(1), pp. 82-94.
- 3. Chen, T.Y. (2012). Comparative analysis of SAW and TOPSIS based on interval-valued fuzzy sets: discussions on score functions and weight constraints. Expert Systems with Applications, 39(2), pp.1848-1861.
- 4. Churchman, C.W. and Ackoff, R.L. (1954). An approximate measure of value. Journal of Operations Research Society of America, 2(1), pp. 172-187.
- 5. Danielson, B. (1987). Study of maintenance problems in Swedish mines, Study Raport. Idhammar Konsult AB.
- 6. Deni, W., Sudana, O. and Sasmita, A. (2013). Analysis and implementation fuzzy multi-attribute decision making SAW method for selection of high achieving students in faculty level. International Journal of Computer Science, 10(1), pp. 674-680.
- 7. Grabiński, T. (1995). Informacyjne aspekty statystyki międzynarodowej. Wiadomości Statystyczne, 9, pp. 31-36.
- 8. Goodridge, W. S. (2016). Sensitivity analysis using Simple Additive Weighting method. International Journal of Intelligent Systems and Applications, 8(5), pp. 27-33
- 9. Huang, Y.S., Chang, W.C., Li, W.H. and Lin, Z.L. (2013). Aggregation of utility-based individual preferences for group decision-making. European Journal of Operational Research, 229(2), pp. 462-469.
- 10. Hwang, C.L. and Yoon, K. (1981). Multiple attribute decision making methods and application. New York: Springer.
- 11. Janssen, R. (1996). Multiobjective decision support for environmental management. Dordrecht: Kulwer Academic Publishers.
- 12. Kobryń, A. (2014). Wielokryterialne wspomaganie decyzji w gospodarowaniu przestrzenią. Warszawa: Difin.
- 13. Koffka, K. and Goodridge, W. (2015). Fault tolerant multi-criteria multi-path routing in wireless sensor networks. International Journal of Intelligent Systems and Applications, 7(6), pp. 55-63.
- 14. Koradecka, D. (red.) (1997). Bezpieczeństwo pracy i ergonomia. Warszawa: Centralny Instytut Ochrony Pracy.
- 15. Kumar, M., Jayaswal, P. and Kushwah K. (2013). Exploring fuzzy SAW method for maintenance strategy selection problem of material handling equipment. International Journal of Current Engineering and Technology, 3(2), pp. 600-605.
- 16. Meister, D. (1973). A critical review of human performance reliability predictive methods. IEEE Transactions of Reliability, 22(3), pp. 116-123.
- 17. Memariani, A., Amini, A. and Alinezhad, A. (2009). Sensitivity analysis of simple additive weighting method (SAW): the results of change in the weight of one attribute on the final ranking of alternatives. Journal of Industrial Engineering, 4, pp. 13-18.
- 18. Mokhtari, E., Khamehchian, M., Montazer, G. and Nikudel, M. (2016). Landfill site selection using Simple Additive Weighting (SAW) method and artificial neural network method; a case study from Lorestan province, Iran. International Journal of Geography and Geology, 5(10), pp. 209-223.
- 19. Müller-Frączek, I. (2017). Propozycja miary syntetycznej. Przegląd Statystyczny, 4, pp. 421-436.
- 20. Niczyporuk, Z. T. (1994). Role of technical diagnostics in improvements of safety in coal mines. In: Proceedings of an International Conference on Condition Monitoring. Swansea, 21st-24th March 1994.
- 21. Nowak, E. (1990). Problem informacji w modelowaniu ekonometrycznym. Warszawa: Państwowe Wydawnictwo Naukowe.
- 22. Putra, D.W.T. and Punggara A.A. (2018). Comparison analysis of simple additive Weighting (SAW) and weigthed product (WP) in decision support systems. In: MATEC Web of Conferences. [online] 215(1), pp. 1003. Available at: https://pdfs.semanticscholar.org/705b/2d3c3ba9e882f113f53c83ec185f7aef6425.pdf?_ga=2.165226936.624443085.1618500084-257788093.1618500084 [Accessed 25 Jan. 2021].
- 23. Sienkiewicz, P. (1988). Inżynieria systemów kierowania. Warszawa: Państwowe Wydawnictwo Ekonomiczne.
- 24. Simanaviciene, R. and Ustinovichius, L. (2010). Sensitivity analysis for multiple criteria decision making methods: TOPSIS and SAW. Social and Behavioral Sciences, 2(6), pp. 7743-7744.
- 25. Tahyudin, I., Rosyidi, R., Ahmar, A.S. and Haviluddin, H. (2018). Comparison of the Simple Additive Weighting (SAW) with the Technique for Others Reference by Similarity to Ideal Solution (TOPSIS) methods. International Journal of Engineering and Technology, 7(2.2), pp. 87-89.
- 26. Trzaskalik, T. (2014). Wielokryterialne wspomaganie decyzji. Przegląd metod i zastosowań. Zeszyty Naukowe Politechniki Śląskiej, 74, pp. 239-263.
- 27. Trzaskalik, T. (red.) (2014). Wielokryterialne wspomaganie decyzji. Metody i zastosowania. Warszawa: Polskie Wydawnictwo Ekonomiczne.
- 28. Wieczorek, S. (2008). Ergonomia. Kraków – Tarnobrzeg: TARBONUS Sp. z o.o.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19854e35-0306-4883-8463-a2c9163dcf25