PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and experimental investigation of helical rolling process for producing steel balls with large diameter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Helical rolling (HR) with high temperature is an efficient forming process to produce bearing steel balls with diameter more than 25 mm. This article discusses the advantages and disadvantages of two HR roller designing methods: single side variable lead method and double side variable lead method. Finite element (FE) simulations of HR processes based on the two methods indicate that the double side variable lead method has higher forming accuracy and is more suitable for forming bearing steel balls. Experiments based on the double side variable lead method are carried out to verify the validity of FE model. The distributions of strain and stress, temperature evolution and rolling force parameters are analyzed based on the FE method. Axial motion analysis shows that the axial velocity of the rolled piece is closely related to axial push velocity of roller convex rib. Microstructure evolution indicates that grains near ball connector area and ball surface get refined due to drastic plastic deformation. The forming accuracy of HR process including radius deviations and ovalities of three cross sections are measured. The statistical results indicate that radius deviation of rolled balls can be controlled within 0.1 mm and ovality can be as small as within 1%. Effects of roller parameters on forming accuracy are analyzed including volume coefficient at groove closed position, forming zone length and starting height of convex rib. Forming accuracy gets better with the increase of volume coefficient, the increase of forming zone length, and the decrease of staring height of convex rib.
Rocznik
Strony
art. no. e5, 2024
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, China
Bibliografia
  • 1. Hu ZH, Hua L. Technology of rotary metal forming. 1st ed. Beijing: Chemical Industry Press; 2010. (in Chinese).
  • 2. Pater Z, Tomczak J, Bartnicki J, Lovell M, Menezes PL. Experimental and numerical analysis of helical-wedge rolling processfor producing steel balls. Int J Mach Tool Manuf. 2013;67:1–7.https://doi.org/10.1016/j.ijmachtools.2012.12.006.
  • 3. Pater Z. FEM analysis of helical rolling for producing steel balls. Key Eng Mater. 2014;572:525–8. https://doi.org/10.4028/www.scientific.net/KEM.572.525.
  • 4. Chyla P, Pater Z, Tomczak J, Chyła P. Numerical analysis ofa rolling process for producing steel balls using helical rolls.Arch Metall Mater. 2016;61:485–92. https:// doi. org/ 10. 1515/amm-2016-0085.
  • 5. Tomczak J, Pater Z, Bulzak T. Designing of screw impressions in the helical rolling of balls. Arch Civ Mech Eng. 2014;14:104–13.https://doi.org/10.1016/j.acme.2013.07.004.
  • 6. Pater Z, Tomczak J, Bartnicki J, Bulzak T. Thermomechanical analysis of a helical-wedge rolling process for producing balls. Metals. 2018;8:862. https://doi.org/10.3390/met8110862.
  • 7. Gontarz A, Tomczak J, Pater Z, Bulzak T. Effect of the forming zone length on helical rolling process for manufacturing steelballs. Materials. 2019;12:2917. https://doi.org/10.3390/ma12182917.
  • 8. Tomczak J, Pater Z, Bulzak T. The effect of process parameters in helical rolling of balls on the quality of products and the forming process. Materials. 2018;11:2125. https://doi.org/10.3390/ma11112125.
  • 9. Bulzak T, Majerski K, Tomczak J, Pater Z, Wójcik Ł. Warm skewrolling of bearing steel balls using multiple impression tools. CIRP J Manuf Sci Technol. 2022;38:288–98. https://doi.org/10.1016/j.cirpj.2022.05.007.
  • 10. Huo YM, He T, Wang BY, Zheng ZH, Yang WB, Hu YJ, ShenML. Forming analysis of steel ball bearings made with warm skewrolling. Mater Technol. 2020;54:417–22. https://doi.org/10.1722/mit.2019.201.
  • 11. Huo YM, He T, Wang BY, Zheng ZH, Xue Y. Numerical prediction and experimental validation of the microstructure of bearing steel ball formation in warm skew rolling. Miner Metals Mater Soc ASM Int. 2020. https://doi.org/10.1007/s11661-019-05589-z.
  • 12. Cao Q, Hua L, Qian DS. Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls. J Cent South Univ. 2015;22:1175–83. https://doi.org/10.1007/s11771-015-2631-6.
  • 13. Hu ZH, Wang BY, Liu JP, Zheng ZH. Technology of skew rolling. 1st ed. Beijing: Chemical Industry Press; 2014. (in Chinese).
  • 14. Yang SC, Chen CK. The surface geometry of rollers with skewrolling of steel balls. Proc Inst Mech Eng Part C J Mech Eng Sci.2015;215:523–32. https://doi.org/10.1243/0954406011520922.
  • 15. Wang QX, Wang QP, Xiao JM. Study on the method for groove design in the helical rolling of steel balls. J Mater Process Tech.1995;55:340–4. https://doi.org/10.1016/0924-0136(95)02028-4.
  • 16. Liu SQ, Liu JP, Xu H, Wang ZP, Shen JX, Wang BY. Experimental and numerical study of cold helical rolling of small-diameter steelballs. Int J Adv Manuf Technol. 2022;119:599–613. https://doi.org/10.1007/s00170-021-08076-1.
  • 17. Zhang HB, Wang BY, Lin LF, Feng PN, Zhou J, Shen JX. Numerical analysis and experimental trial of axial feed skew rolling for forming bars. Arch Civ Mech Eng. 2022;22:17. https://doi.org/10.1007/s43452-021-00334-z.
  • 18. Simufact Engineering. Simufact material 2012.0.0.14871. Hamburg: Simufact Engineering Gmbh; 2012.
  • 19. Cao XQ, Wang BY, Zhou J, Shen JX, Lin LF. Exploratory experiment and numerical simulation investigation on a novel flexible skew rolling of hollow shafts. Int J Adv Manuf Technol. 2021;116:3391–403. https:// doi. org/ 10. 1007/s00170-021-07360-4.
  • 20. Yang CP, Dong HB, Hu ZH. Micro-mechanism of central damage formation during cross wedge rolling. J Mater Process Tech.2018;252:322–9. https://doi.org/10.1016/j.jmatprotec.2017.09.041.
  • 21. Pater Z, Tomczak J, Bulzak T, Wojcik Ł, Skripalenko M. Prediction of ductile fracture in skew rolling processes. Int J Mach Tool Manuf. 2021;163:103706. https://doi.org/10.1016/j.ijmachtools.2021.103706.
  • 22. Bhadeshia H. Steels for bearings. Progress Mater Sci.2012;57:268–435. https://doi.org/10.1016/j.pmatsci.2011.06.002.
  • 23. Qian DS, Wang KW, Liu QL, et al. Effect of annealing parameterson microstructure and mechanical property of hot-rolled 100Cr6 bearing ring. Mater Sci Technol. 2016;32:1086–93. https://doi.org/10.1080/02670836.2015.1115647.
  • 24. Zhang JG, Sun DS, Shi HS, et al. Microstructure and continuous cooling transformation thermograms of spray formed GCr15 steel. Mater Sci Eng A. 2002;326:20–5. https://doi.org/10.1016/S0921-5093(01)01436-8.
  • 25. Hwang H, Cooman BC. Influence of the initial microstructure on the spheroidization of SAE 52100 bearing steel. Steel Res Int.2016;87:112–6. https://doi.org/10.1002/srin.201400591.
  • 26. Hunkel M. Tempering effects of a thermal martensite during quenching and reheating of a SAE 52100 bearing steel. Mater Sci Eng, A. 2020;790: 139601. https://doi.org/10.1016/j.msea.2020.139601.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-197e0e7e-e322-44f8-9657-d5ed23af25da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.