PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydroxyl Terminated Polybutadiene: Chemical Modification and Application of these Modifiers in Propellants and Explosives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxyl terminated polybutadiene (HTPB) as a telechelic liquid polymer has been widely used in propellants and explosives and many modified-HTPBs have been reported in the literature. As a binder or additive in propellants and explosives, the chemical modification of HTPB for improving certain properties of propellants has been summarized in detail in this article. According to the application drawbacks of HTPB, modified-HTPB can be classified differently. Furthermore, there are polymers that have been modified on their energetic properties, such as GAP-PB-GAP, BAMO-PB-BAMO, AMMO-PB-AMMO, Nitro-HTPB, HTPB-DNB and NHTPB. Pre-polymers modified on their combustion properties include Butacene®, FPDS-g-HTPB, Fc-HTPB, BiFc-g-HTPB, HTPB→[Fe(CO)3]x, PPA-HTPB-PPA and PNBE-HTPB-PNBE. HTPBs are also modified in curing systems containing, for example ETPB, PTPB, PrTPB, AzTPB, and PUPB, and other modification results are reviewed. Additionally, this overview is expected to provide an outlook for further studies in these fields.
Rocznik
Strony
153--183
Opis fizyczny
Bibliogr. 155 poz.
Twórcy
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China
Bibliografia
  • [1] Gopala Krishnan, P.S.; Ayyaswamy, K.; Nayak, S.K. Hydroxy Terminated Polybutadiene: Chemical Modifications and Applications. J. Macromol. Sci. A 2013, 50(1): 128-138.
  • [2] Zhang, C.F.; Wu, X.Q.; Zhang, W.C.; Zhang, C.; Wu, Y.G. The Application and Development of Hydroxy-terminated-polybutadiene Propellant. Tianjin Chem. Ind. 2008, 22(2): 12-14.
  • [3] Chang, L.; Wang, J.; Tong, C.Y.; Zhao, L.; Liu, X.M. Comparison of Antimicrobial Activities of Polyacrylonitrile Fibers Modified with Quaternary Phosphonium Salts Having Different Alkyl Chain Lengths. J. Appl. Polym. Sci. 2016, 133(29): 43689 (DOI: 10.1002/app.43689).
  • [4] Nabid, M.R.; Omrani, I. Facile Preparation of PH-responsive Polyurethane Nanocarrier for Oral Delivery. Mat. Sci. Eng. C-Mater. 2016, 69: 532-537.
  • [5] Malkappa, K.; Rao, B.N.; Jana, T. Functionalized Polybutadiene Diol Based Hydrophobic, Water Dispersible Polyurethane Nanocomposites: Role of Organoclay Structure. Polymer 2016, 99: 404-416.
  • [6] Li, X.; Wang, B.L.; Lin, Q.H.; Chen, L.P. Compatibility Study of DNTF with Some Insensitive Energetic Materials and Inert Materials. J. Energ. Mater. 2016, 34(4): 409-415.
  • [7] Kshirsagar, D.R.; Jain, S.; Jawalkar, S.N.; Naik, N.H.; Pawar, S.; Maurya, M. Evaluation of Nano-Co3O4 in HTPB-based Composite Propellant Formulations. Propellants Explos. Pyrotech. 2016, 41(2): 304-311.
  • [8] Kuo, C.; Samuelson, L.A.; McCarthy, S.P.; Tripathy, S.K.; Kumar, J. Polybutadiene Modified Polyaniline Microparticles. J. Macromol. Sci. A 2003, 40(12): 1383-1396.
  • [9] Zhang, J.Y.; Beckman, E.J.; Piesco, N.P.; Agarwal, S. A New Peptide-based Urethane Polymer: Synthesis, Biodegradation, and Potential to Support Cell Growth in Vitro. Biomaterials 2000, 21(12): 1247-1258.
  • [10] Manjari, R.; Joseph, V.C.; Pandureng, L.P.; Sriram, T. Structure-property Relationship of HTPB-based Propellants. I. Effect of Hydroxyl Value of HTPB Resin. J. Appl. Polym. Sci. 1993, 48(2): 271-278.
  • [11] Manjari, R.; Somasundaran, U.I.; Joseph, V.C.; Sriram, T. Structure-property Relationship of HTPB-based Propellants. II. Formulation Tailoring for Better Mechanical Properties. J. Appl. Polym. Sci. 1993, 48(2): 279-289.
  • [12] Manjari, R.; Pandureng, L.P.; Somasundaran, U.I.; Sriram, T. Structure-property Relationship of HTPB-based Propellants. III. Optimization Trials with Varying Levels of Diol-Triol Contents. J. Appl. Polym. Sci. 1994, 51(3): 435-442.
  • [13] Sekkar, V.; Bhagawan, S.S.; Prabhakaran, N.; Rama Rao, M.; Ninan, K.N. Polyurethanes Based on Hydroxyl Terminated Polybutadiene: Modelling of Network Parameters and Correlation with Mechanical Properties. Polymer, 2000, 41(18): 6773-6786.
  • [14] Korah Bina, C.; Kannan, K.G.; Ninan, K.N. DSC Study on the Effect of Isocyanates and Catalysts on the HTPB Cure Reaction. J. Therm. Anal. Cal. 2004, 78(3): 753-760.
  • [15] Singh, M.; Kanungo, B.K.; Bansal, T.K. Kinetic Studies on Curing of Hydroxyterminated Polybutadiene Prepolymer-based Polyurethane Network. J. Appl. Polym. Sci. 2002, 85(4): 842-846.
  • [16] Gupta, T.; Adhikari, B. Thermal Degradation and Stability of HTPB-based Polyurethane and Polyurethaneureas. Thermochim. Acta 2003, 402(1): 169-181.
  • [17] Carvalho Rufino, S.; da Silva, G.; Iha, K. An Overview of the Technological Progress in Propellants Using Hydroxyl-terminated Polybutadiene as Binder During 2002-2012. J. Aerosp. Technol. Manag. 2013, 5(3): 267-278.
  • [18] Gupta, D.C.; Deo, S.S.; Wast, D.V.; Raomore, S.S.; Gholap, D.H. HTPB-based Polyurethanes for Inhibition of Composite Propellants. J. Appl. Polym. Sci. 1995, 55(8): 1151-1155.
  • [19] Abd-Elghany, M.; Elbeih, A.; Hassanein, S. Thermal Behavior and Decomposition Kinetics of RDX and RDX/HTPB Composition Using Various Techniques and Methods. Cent. Eur. J. Energ. Mater. 2016, 13(3): 714-735.
  • [20] Yan, Q.L.; Zeman, S.; Eibeih, A. Recent Advances in Thermal Analysis and Stability Evaluation of Insensitive Plastic Bonded Explosives(PBXs). Thermochim. Acta 2012, 537: 1-12.
  • [21] Vadhe, P.P.; Pawar, R.B.; Sinha, R.K.; Asthana, S.N.; Subhanada Rao, A. Cast Aluminized Explosives (Review). Combust. Explo. Shock Waves 2008, 44(4): 461-477.
  • [22] Abd-Elghany, M.; Klapötke, T.M.; Elbeih, A.; Zeman S. Investigation of Different Thermal Analysis Techniques to Determine the Decomposition Kinetics of ε-2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with Reduced Sensitivity and Its Cured PBX. J. Anal. Appl. Pyrol. 2017, 126: 267-274.
  • [23] Joshi, K.; Chaudhuri, S. Hot Spot Interaction with Hydroxyl-Terminated Polybutadiene Binder in Energetic Composites. J. Phys. Chem. C 2018, 122(26): 14434-14446.
  • [24] Panicker, S.S.; Ninan, K.N. Effect of Reactivity of Different Types of Hydroxyl Groups of HTPB on Mechanical Properties of the Cured Product. J. Appl. Polym. Sci. 1997, 63(10): 1313-1320.
  • [25] Regan, P.R.; Teo, H.H.; Booth, C.; Cunliffe, A.V.; Hudd, A.L. The Molecular Characteristics of Hydroxyl-terminated Polybutadiene. Brit. Polym. J. 1985, 17(1): 22-26.
  • [26] Chen, T.K.; Hwung, C.J.; Hou, C.C. Effects of Number-average Molecular Weight of Network Chain on Physical Properties of cis-Polybutadiene-containing Polyurethane. Polym. Eng. Sci. 1992, 32(2): 115-121.
  • [27] Murali Sankar, R.; Saha, S.; Seeni Meera, K.; Jana, T. Functionalization of Hydroxyl Terminated Polybutadiene with Biologically Active Fluorescent Molecule. Bull. Mater. Sci. 2009, 32(5): 507-514.
  • [28] Zheng, N.; Jie, S.Y.; Li, B.G. Synthesis, Chemical Modifications and Applications of Hydroxyl-terminated Polybutadiene. Prog. Chem. 2016, 28: 665-672.
  • [29] Zhou, Q.Z.; Jie, S.Y.; Li, B.G. Preparation of Hydroxyl-terminated Polybutadiene with High cis-1,4 Content. Ind. Eng. Chem. Res. 2014, 53(46): 17884-17893.
  • [30] Cao, Z.; Zhou, Q.Z.; Jie, S.Y.; Li, B.G. High cis-1,4 Hydroxyl-terminated Polybutadiene-based Polyurethanes with Extremely Low Glass Transition Temperature and Excellent Mechanical Properties. Ind. Eng. Chem. Res. 2016, 55(6): 1582-1589.
  • [31] Sheikhy, H.; Shahidzadeh, M.; Ramezanzadeh, B. An Evaluation of the Mechanical and Adhesion Properties of a Hydroxyl-terminated Polybutadiene (HTPB)-based Adhesive Including Different Kinds of Chain Extenders. Polym. Bull. 2015, 72(4): 755-777.
  • [32] Huang, S.L.; Lai, J.Y. Structure-tensile Properties of Polyurethanes. Eur. Polym. J. 1997, 33(10-12): 1563-1567.
  • [33] Sekkar, V.; Raunija, T.S.K. Issues Related with Pot Life Extension for Hydroxylterminated Polybutadiene-based Solid Propellant Binder System. Propellants Explos. Pyrotech. 2015, 40(2): 267-274.
  • [34] Wingborg, N. Increasing the Tensile Strength of HTPB with Different Isocyanates and Chain Extenders. Polym. Test. 2002, 21(3): 283-287.
  • [35] Liu, N.; Shu, Y.J.; Li, H.; Zhai, L.J.; Li, Y.N.; Wang, B.Z. Synthesis, Characterization and Properties of Heat-resistant Explosive Materials: Polynitroaromatic Substituted Difurazano [3,4-b:3’,4’-e]pyrazines. RSC Adv. 2015, 5(54): 43780-43785.
  • [36] Sikder, A.K.; Sikder, N. A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications. J. Hazard. Mater. 2004, 112(1-2): 1-15.
  • [37] Pagoria, P.F.; Lee, G.S.; Mitchell, A.R.; Schmidt, R.D. A Review of Energetic Materials Synthesis. Thermochim. Acta 2002, 384(1-2): 187-204.
  • [38] Provatas, A. Energetic Polymers and Plasticizers for Explosive Formulations – A Review of Recent Advances. DSTO Aeronautical and Maritime Research Laboratory, Department of Defense, Report DSTO-TR-966, 2000.
  • [39] Bhowmik, D.; Sadavarte, V.S.; Pande, S.M.; Saraswat, B.S. An Energetic Binder for the Formulation of Advanced Solid Rocket Propellants. Cent. Eur. J. Energ. Mater. 2015, 12(1): 145-158.
  • [40] Agrawal, J.P. Recent Trends in High-energy Materials. Prog. Energy Combust. Sci. 1998, 24(1): 1-30.
  • [41] Xu, M.H.; Ge, Z.X.; Lu, X.M.; Mo, H.C.; Ji, Y.P.; Hu, H.M. Structure and Mechanical Properties of Fluorine-containing Glycidyl Azide Polymer-based Energetic Binders. Polym. Int. 2017, 66(9): 1318-1323.
  • [42] Xu, M.H.; Ge, Z.X.; Lu, X.M.; Mo, H.C.; Ji, Y.P.; Hu, H.M. Fluorinated Glycidyl Azide Polymers as Potential Energetic Binders. RSC Adv. 2017, 7(75): 47271-47278.
  • [43] Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P. Advances in Science and Technology of Modern Energetic Materials: An Overview. J. Hazard. Mater. 2008, 151(2-3): 289-305.
  • [44] Ni, B.; Qin, G.M.; Ran, X.L. Mechanical Properties of GAP/HTPB Blend Binders. Chinese J. Energ. Mater. 2010, 18(2): 167-173.
  • [45] Wang, X.P.; Luo, Y.J.; Zhao, Y.B.; Zhang, C. Study on the Mechanical Properties of GAP/HTPB Binders Films. New Chemical Materials 2009, 37(7): 66-67.
  • [46] Mathew, S.; Manu, S.K.; Varghese, T.L. Thermomechanical and Morphological Characteristics of Cross-linked GAP and GAP-HTPB Networks with Different Diisocyanates. Propellants Explos. Pyrotech. 2008, 33(2): 146-152.
  • [47] Tanver, A.; Huang, M.H.; Luo, Y.J.; Khalid, S.; Hussain, T. Energetic Interpenetrating Polymer Network Based on Orthogonal Azido-alkyne Click and Polyurethane for Potential Solid Propellant. RSC Adv. 2015, 5(79): 64478-64485.
  • [48] Lillya, C.P.; Juang, R.H.; Chien, J.C.W. Synthesis of Azido-polymers of Butadiene. J. Polym. Sci. Polym. Chem. Ed. 1982, 20(6): 1505-1516.
  • [49] Shekhar Pant, C.; Mada, S.S.N.M.S.; Mehilal; Banerjee, S.; Khanna, P.K. Synthesis of Azide-functionalized Hydroxyl-terminated Polybutadiene. J. Energ. Mater. 2016, 34(4): 440-449.
  • [50] Agrawal, J.P. Some New High Energy Materials and Their Formulations for Specialized Applications. Propellants Explos. Pyrotech. 2005, 30(5): 316-328.
  • [51] Stacer, R.G.; Husband, D.M. Molecular Structure of the Ideal Solid Propellant Binder. Propellants Explos. Pyrotech. 1991, 16(4): 167-176.
  • [52] Hazer, B. Grafting on Polybutadiene with Macro or Macromonomer Initiators Containing Poly(ethylene glycol) Units. Macromol. Chem. Phys. 1995, 196(6):1945-1952.
  • [53] Eroğlu, M.S.; Hazer, B.; Güven, O. Synthesis and Characterization of Hydroxyl Terminated Poly(butadiene)-g-poly(glycidyl azide) Copolymer as a New Energetic Propellant Binder. Polym. Bull. 1996, 36(6): 695-701.
  • [54] Mohan, Y.M.; Raju, K.M. Synthesis and Characterization of HTPB-GAP Crosslinked Co-polymers. Des. Monomers. Polym. 2005, 8(2): 159-175.
  • [55] Subramanian, K. Hydroxyl-terminated Poly(azidomethyl Ethylene Oxideb-butadiene-b-azidomethyl Ethylene Oxide)―Synthesis, Characterizationand Its Potential as a Propellant Binder. Eur. Polym. J. 1999, 35(8): 1403-1411.
  • [56] Vasudevan, V.; Sundararajan, G. Synthesis of GAP-PB-GAP Triblock Copolymer and Application as Modifier in AP/HTPB Composite Propellant. Propellants Explos. Pyrotech. 1999, 24(5): 295-300.
  • [57] Filippi, S.; Mori, L.; Cappello, M.; Polacco, G. Glycidyl Azide-Butadiene Block Copolymers: Synthesis from the Homopolymers and a Chain Extender. Propellants Explos. Pyrotech. 2017, 42(7): 826-835.
  • [58] Shu, Y.J.; Huo, J.C. Theory of Explosives. Chemical Industry Press, Beijing, 2011, pp. 374-375; ISBN 978-7-122-11349-8.
  • [59] Pisharath, S.; Ang, H.G. Synthesis and Thermal Decomposition of GAPPoly(BAMO) Copolymer. Polym. Degrad. Stabil. 2007, 92(7): 1365-1377.
  • [60] Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I.K. Azido Polymers-Energetic Binders for Solid Rocket Propellants. J. Macromol. Sci. Part C: Polym. Rev. 2003, 43(4): 505-545.
  • [61] Reddy, T.S.; Nair, J.K.; Satpute, R.S.; Wagh, R.M.; Sikder, A.K.; Venugopalan, S. Bis(azidomethyl) Oxetane/Hydroxyl-terminated Polybutadiene/Bis(azidomethyl) Oxetane Triblock Copolymer: Synthesis and Characterization. J. Appl. Polym. Sci. 2007, 106(3): 1885-1888.
  • [62] Cappello, M.; Lamia, P.; Mura, C.; Polacco, G.; Filippi, S. Azidated Etherbutadiene-ether Block Copolymers as Binders for Solid Propellants. J. Energ. Mater. 2016, 34(3): 318-341.
  • [63] Murali Sankar, R.; Roy, T.K.; Jana, T. Functionalization of Terminal Carbon Atoms of Hydroxyl Terminated Polybutadiene by Polyazido Nitrogen Rich Molecules. Bull. Mater. Sci. 2011, 34(4): 745-754.
  • [64] Rao, B.N.; Yadav, P.J.P.; Malkappa, K.; Jana, T.; Sastry, P.U. Triazine Functionalized Hydroxyl Terminated Polybutadiene Polyurethane: Influence of Triazine Structure. Polymer 2015, 77: 323-333.
  • [65] Chien, J.C.W.; Kohara, T.; Lillya, C.P.; Sarubbi, T.; Su, B.H.; Miller, R.S. Phase Transfer-catalyzed Nitromercuration of Diene Polymers. J. Polym. Sci.: Polym. Chem. Edit. 1980, 18(8): 2723-2729.
  • [66] Shekhar Pant, C.; Santosh, M.S.S.N.M.; Banerjee, S.; Khanna, P.K. Single Step Synthesis of Nitro-functionalized Hydroxyl-terminated Polybutadiene. Propellants Explos. Pyrotech. 2013, 38(6): 748-753.
  • [67] Ghayeni, H.R.; Razeghi, R.; Kazemi, F.; Olyaei, A. An Efficient Synthesis, Evaluation of Parameters and Characterization of Nitro-Hydroxyl-Terminated Polybutadiene (Nitro-HTPB). Propellants Explos. Pyrotech. 2018, 43(6): 574-582.
  • [68] Abusaidi, H.; Ghaieni, H.R.; Pourmortazavi, S.M.; Motamed-Shariati, S.H. Effect of Nitro Content on Thermal Stability and Decomposition Kinetics of Nitro-HTPB. J. Therm. Anal. Calorim. 2016, 124(2): 935-941.
  • [69] Abusaidi, H.; Ghaieni, H.R. Thermal Analysis and Kinetic Decomposition of Nitrofunctionalized Hydroxyl-terminated Polybutadiene Bonded Explosive. J. Therm. Anal. Calorim. 2017, 127(3): 2301-2306.
  • [70] Abusaidi, H.; Ghorbani, M.; Ghaieni, H.R. Development of Composite Solid Propellant Based on Nitro Functionalized Hydroxyl-terminated Polybutadiene. Propellants Explos. Pyrotech. 2017, 42(6): 671-675.
  • [71] Ashrafi, M.; Fakhraian, H.; Dehnavi, M.A. Synthesis, Characterization and Properties of Nitropolybutadiene as Energetic Plasticizer for NHTPB Binder. Propellants Explos. Pyrotech. 2017, 42(3): 269-275.
  • [72] Murali Sankar, R.; Roy, T.K.; Jana, T. Terminal Functionalized Hydroxyl-terminated Polybutadiene: An Energetic Binder for Propellant. J. Appl. Polym. Sci. 2009, 114(2): 732-741.
  • [73] Malkappa, K.; Jana, T. Simultaneous Improvement of Tensile Strength and Elongation: An Unprecedented Observation in the Case of Hydroxyl Terminated Polybutadiene Polyurethanes. Ind. Eng. Chem. Res. 2013, 52(36): 12887-12896.
  • [74] Abdullah, M.; Gholamian, F.; Zarei, A.R. Performance Analysis of Composite Propellant Based on HTPB-DNCB. J. Propul. Power. 2014, 30(2): 526-528.
  • [75] Colclough, M.E.; Desai, H.; Millar, R.W.; Paul, N.C.; Stewart, M.J.; Golding, P. Energetic Polymers as Binders in Composite Propellants and Explosives. Polym. Advan. Technol. 1994, 5(9): 554-560.
  • [76] Colclough, M.E.; Paul, N.C. Nitrated Hydroxy-terminated Polybutadiene: Synthesis and Properties. In: Nitration (Lyle F.; Albright, L.F.; Carr, R.V.C.; Schmitt, R.J., Eds.), ACS Symposium Series 1996, 623, pp. 97-103; ISBN13: 9780841233935.
  • [77] Wang, Q.F.; Wang, L.; Zhang, X.W.; Mi, Z.T. Thermal Stability and Kinetic of Decomposition of Nitrated HTPB. J. Hazard. Mater. 2009, 172(2-3): 1659-1664.
  • [78] Wang, Q.F.; Mi, Z.T.; Zhang, X.W.; Wang, L. Research Progress in Green Synthesis of Energetic Binders of Nitrate Esters. Chem. Propellants. Polym. Mater. 2008, 6(2): 11-15.
  • [79] Wang, B.; Zheng, Y.J.; Yuan, W.; Wang, W.B.; Wang, L.L.; Xie, H.T. Synthesis, Structure Characterization and Performance Evaluation of Nitrated Hydroxylterminated Polybutadiene. Chem. Propellants Polym. Mater. 2013, 11(4): 76-78.
  • [80] Tan, H.M. The Chemistry and Technology of Solid Rocket Propellant. Beijing Institute of Technology Press, Beijing, 2015, pp. 67-68; ISBN 978-7-5640-9714-1.
  • [81] Isert, S.; Lane, C.D.; Gunduz, I.E.; Son, S.F. Tailoring Burning Rates Using Reactive Wires in Composite Solid Rocket Propellants. Proc. Combust. Inst. 2017, 36(2): 2283-2290.
  • [82] Swarts, P.J.; Immelman, M.; Lampercht, G.J.; Greyling, S.E.; Swarts, J.C. Ferrocene Derivatives as High Burning Rate Catalyst in Composite Propellants. S. Afr. Tydskr. Chem. 1997, 50(4): 208-216.
  • [83] Sharma, J.K.; Srivastava, P.; Singh, G.; Akhtar, M.S.; Ameen, S. Catalytic Thermal Decomposition of Ammonium Perchlorate and Combustion of Composite Solid Propellants Over Green Synthesized CuO Nanoparticles. Thermochim. Acta 2015, 614(20): 110-115.
  • [84] Huang, G.L.; Tang, S.P.; Ding, H.X. Recent Advances in the Research of Ferrocene Derivatives as Burning Rate Catalysts. J. Propul. Technol. 1989, 5: 46-50.
  • [85] Zain-ul-Abdin; Yu, H.J.; Wang, L.; Saleem, M.; Khalid, H.; Abbasi, N.M.; Akram, M. Synthesis, Anti-migration and Burning Rate Catalytic Mechanism of Ferrocene-based Compounds. Appl. Organometal. Chem. 2014, 28(8): 567-575.
  • [86] Zhou, W.; Wang, L.; Yu, H.; Tong, R.; Chen, Q.; Wang, J.; Yang, X.; Zain-ul-Abdin; Saleem, M. Progress on the Synthesis and Catalytic and Anti-migration Properties of Ferrocene-based Burning Rate Catalyst. Appl. Organometal. Chem. 2016, 30(9): 796-805.
  • [87] Xiao, F.J.; Yu, X.L.; Feng, F.F.; Sun, X.A.; Wu, X.F.; Luo, Y.J. Investigation of the Redox Property, Migration and Catalytic Performance of Ferrocene-modified Hyperbranched Poly(amine) Ester. J. Inorg. Organomet. Polym. 2013, 23(2): 315-324.
  • [88] Xiao, F.J.; Feng, F.F.; Li, L.L.; Zhang, D. Investigation on Ultraviolet Absorption Properties, Migration, and Catalytic Performances of Ferrocene Modified Hyperbranched Polyesters. Propellants Explos. Pyrotech. 2013, 38(3): 358-365.
  • [89] Zhou, Z.H.; Liu, W.; Cui, G.H.; Tian, G.F.; Wu, Z.P.; Wu, D.Z. Study on Effect of Bis(hydroxymethyl)ferrocene in HTPB Binder Systems. Chem. Propellants Polym. Mater. 2013, 11(4): 66-69.
  • [90] Liu, J.Y. The Development of Propellants in SNPE. (in Chinese) Wingled Missles J. 1993, 5: 40-41.
  • [91] Xie, J.H.; Shi, D.F.; Song, K.S. Study on the Performance of AP/Al/HTPB Propellants with Butacene. Chem. Propellants Polym. Mater. 2002, 3: 28-29.
  • [92] Gore, G.M.; Nazare, A.N.; Divekar, C.N.; Hait, S.K.; Asthana, S.N. Studies on Nonaluminized High Burning Rate AP-composite Propellants. J. Energ. Mater. 2004, 22(3): 151-169.
  • [93] Seyidoglu, T.; Bohn, M.A. Characterization of Aging Behavior of Butacene Based Composite Propellants by Loss Factor Curves. Propellants Explos. Pyrotech. 2017, 42(7): 712-723.
  • [94] Lucio, B.; de la Fuente, J.L. Rheokinetic Analysis on the Formation of Metallopolyurethanes Based on Hydroxyl-terminated Polybutadiene. Eur. Polym. J. 2014, 50: 117-126.
  • [95] Lucio, B.; de la Fuente, J.L. Non-isothermal DSC and Rheological Curing of Ferrocene-Functionalized, Hydroxyl-terminated Polybutadiene Polyurethane. React. Funct. Polym. 2016, 107: 60-68.
  • [96] Lucio, B.; de la Fuente, J.L. Rheological Cure Characterization of an Advance Functional Polyurethane. Thermochim. Acta 2014, 596: 6-13.
  • [97] Lucio, B.; de la Fuente, J.L. Kinetic and Chemorheological Modelling of the Polymerization of 2,4-Toluenediisocyanate and Ferrocene-functionalized Hydroxyl Terminated Polybutadiene. Polymer 2018, 140: 290-303.
  • [98] Lucio, B.; de la Fuente, J.L.; Cerrada, M.L. Characterization of Phase Structures of Novel Metallo-polyurethanes. Macromol. Chem. Phys. 2015, 216(20): 2048-2060.
  • [99] Kurva, R.; Gupta, G.; Dhabbe, K.I.; Jawale, L.S.; Kulkarni, P.S.; Maurya, M. Evaluation of 4-(Dimethysilyl) Butyl Ferrocene Grafted HTPB as a Burning Rate Modifier in Composite Propellant Formulation using Bicurative System. Propellants Explos. Pyrotech. 2017, 42(4): 401-409.
  • [100] Cho, B.S.; Noh, S.T. Thermal Properties of Polyurethane Binder with 2-(Ferrocenylpropyl)dimethylsilane-grafted Hydroxyl-terminated Polybutadiene. J. Appl. Polym. Sci. 2011, 121(6): 3560-3568.
  • [101] Teimuri-mofrad, R.; Safa, K.D.; Abedinpour, S.; Rahimpour, K. Synthesis of 5-(Dimethylsilyl)pentylalkylferrocene-grafted HTPB (alkylFc-HTPB) via Platinum-catalyzed Hydrosilylation. J. Iran. Chem. Soc. 2017, 14: 2177-2185.
  • [102] Subramanian, K. Synthesis and Characterization of Poly(vinyl ferrocene) Grafted Hydroxyl-Terminated Poly(butadiene): A Propellant Binder with a Built-in Burnrate Catalyst. J. Polym. Sci. Pol. Chem. 1999, 37(22): 4090-4099.
  • [103] Saravanakumar, D.; Sengottuvelan, N.; Narayanan, V.; Kandaswamy, M.; Varghese, T.L. Burning-rate Enhancement of a High-Energy Rocket Composite Solid Propellant Based on Ferrocene-grafted Hydroxyl-terminated Polybutadiene Binder. J. Appl. Polym. Sci. 2011, 119(5): 2517-2524.
  • [104] Vilar, W.D.; Menezes, S.M.C.; Akcelrud, L. Characterization of Hydroxylterminated Polybutadiene. Polym. Bull. 1995, 35(4): 481-488.
  • [105] Zhang, M.; Yan, X.C.; Xu, X.L.; Shen, Y.H.; Wang, X.W. Synthesis and Properties of Biferrocene with Organic Silicon Grafting HTPB. China Plastics 2015, 29(5): 47-53.
  • [106] McDonald, B.A.; Rice, J.R.; Kirkham, M.W. Humidity Induced Burning Rate Degradation of an Iron Oxide Catalyzed Ammonium Perchlorate/HTPB Composite Propellant. Combust. Flame 2014, 161(1): 363-369.
  • [107] Campos, E.A.; Dutra, R.C.L.; Rezende, L.C.; Diniz, M.F.; Nawa, W.M.D.; Iha, K. Performance Evaluation of Commercial Copper Chromites as Burning Rate Catalyst for Solid Propellants. J. Aerosp. Technol. Manag. 2010, 2(3): 323-330.
  • [108] Zhao, J.; Liu, Z.S.; Qin, Y.L.; Hu, W.B. Fabrication of Co3O4/Graphene Oxide Composites Using Supercritical Fluid and Their Catalytic Application for the Decomposition of Ammonium Perchlorate. CrystEngComm 2014, 16(10): 2001-2008.
  • [109] Jacobs, P.W.M.; Whitehead, H.M. Decomposition and Combustion of Ammonium Perchlorate. Combust. Flame 1969, 13: 551-590.
  • [110] Kishore, K.; Pai Verneker, V.R.; Sunitha, M.R. Effect of Catalyst Concentration on Burning Rate of Composite Solid Propellants. AIAA J. 1977, 15(11): 1649-1651.
  • [111] Berger, M.; Manuel, T.A. Chemistry of Polybutadiene-iron Carbonyl Systems. J. Polym. Sci. Polym. Chem. Ed. 1966, 4(6): 1509-1516.
  • [112] Subramanian, K.; Sastri, K.S. Synthesis and Characterization of Iron Carbonylmodified Hydroxyl-terminated Polybutadiene: A Catalyst-bound Propellant Binder for Burn-rate Augmentation. J. Appl. Polym. Sci. 2003, 90(10): 2813-2823.
  • [113] Vasudevan, V.; Sundararajan, G. Synthesis of Triblock Copolymers (PolyApolybutadiene-polyA) and Applications as Additives in Composite Propellants. Appl. Catal. A-Gen. 1999, 182(1): 97-106.
  • [114] Sekkar, V.; Raunija, T.S.K. Issues Related with Pot Life Extension for Hydroxyl terminated Polybutadiene-based Solid Propellant Binder System. Propellants Explos. Pyrotech. 2015, 40(2): 267-274.
  • [115] Li, H.; Zhao, F.Q.; Yu, Q.Q.; Wang, B.Z.; Lu, X.M. A Comparison of Triazole Cross-linked Polymers Based on Poly-AMMO and GAP: Mechanical Properties and Curing Kinetics. J. Appl. Polym. Sci. 2016, 133(17): 43341.
  • [116] Min, B.S.; Park, Y.C.; Yoo, J.C. A Study on the Triazole Crosslinked Polymeric Binder Based on Glycidyl Azide Polymer and Dipolarophile Curing Agents. Propellants Explos. Pyrotech. 2012, 37(1): 59-68.
  • [117] Keicher, T.; Kuglstatter, W.; Eisele, S.; Wetzel, T.; Krause, H. Isocyanate-free Curing of Glycidyl Azide Polymer (GAP) with Bis-propargyl-succinate(II). Propellants Explos. Pyrotech. 2009, 34: 210-217.
  • [118] Lee, D.H.; Kim, K.T.; Jang, Y.; Lee, S.; Jeon, H.B.; Paik, H.; Min, B.S.; Kim, W. 1,2,3-Triazole Crosslinked Polymers as Binders for Solid Rocket Propellants. J. Appl. Polym. Sci. 2014, 131(15): 40594.
  • [119] Menke, K.; Heintz, T.; Schweikert, W.; Keicher, T.; Krause, H. Formulation and Properties of ADN/GAP Propellants. Propellants Explos. Pyrotech. 2009, 34(3): 218-230.
  • [120] Li, N.; Gan, X.X.; Mo, H.C.; Li, L.; Lu, X.M.; Han, T. Synthesis of Epoxy Terminated Polybutadiene. Chinese J. Energ. Mater. 2011, 19(5): 505-508.
  • [121] Fu, X.L.; Fan, X.Z.; Zhang, W.; Li, N.; Zhou, W.J. Study on Surface-interface Properties Between Epoxy-terminal Polybutadiene. China Adhes. 2015, 24(7): 22-25.
  • [122] Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41(14): 2596-2599.
  • [123] Ding, Y.Z.; Hu, C.; Guo, X.; Che, Y.Y.; Huang, J. Structure and Mechanical Properties of Novel Composites Based on Glycidyl Azide Polymer and Propargylterminated Polybutadiene as Potential Binder of Solid Propellant. J. Appl. Polym. Sci 2014, 131(7): 40007.
  • [124] Reshmi, S.; Arunan, E.; Nair, C.P.R. Azide and Alkyne Terminated Polybutadiene Binders: Synthesis, Cross-linking, and Propellant Studies. Ind. Eng. Chem. Res. 2014, 53(43): 16612-16620.
  • [125] Reshmi, S.; Vijayalakshmi, K.P.; Thomas, D.; Rajeev, R.; Reghunadhan Nair, C.P. Polybutadiene Crosslinked by 1,3-dipolar Cycloaddition: Pyrolysis Mechanism, DFT Studies and Propellant Burning Rate Characteristics. Combust. Flame 2016, 167: 380-391.
  • [126] Li, H.; Yu, Q.Q.; Zhao, F.Q.; Wang, B.Z.; Li, N. Polytriazoles Based on Alkyne Terminated Polybutadiene with and without Urethane Segments: Morphology and Properties. J. Appl. Polym. Sci. 2017, DOI:10.1002/app.45178.
  • [127] Dong, J.; Yang, R.J.; Zhai, J.X. Synthesis and Characterization of Azido-terminated Polybutadiene. Polym. Mater. Sci. Eng. 2015, 31(9): 7-10.
  • [128] Dong, J. Synthesis and Property Investigation of Polybutadiene-based Polybutadiene Elastomer. Thesis MSc., University of Beijing Institute of Technology, 2015.
  • [129] Michael, L.; Claire-Hélène, B.; Cilles, B.; Jean-Pierre, C. Synthesis of Poly(butadiene)-poly(ε-caprolactone) Multiblocks Based on Hydroxyl Telechelic Poly(butadiene): Composition and Kinetic Study. e-polymers 2009, No. 032.
  • [130] Bennett, S.J.; Barnes, M.W.; Kolonko, K.J. Propellant Binder Prepared from a PCP/HTPB Block Polymer. Patent US 4853051, 1989.
  • [131] Chai, C.P.; Luo, Y.J.; Guo, S.F.; Li, G.P.; Chen, H. Synthesis and Characterization of Novel Poly(ε-CL)-block-HTPB-block-poly(ε-CL) Triblock Copolymer. Chinese J. Energ. Mater. 2008, 16(3): 301-304.
  • [132] Huang, C.C.; Hwu, W.H.; Cheng, C.S.; Shyy, I.N.; Yang, K.K. Study on Thermal Decomposition of Composite Propellants Containing PCP Polymer or PCP-HTPB Copolymer as a Binder. Propellants Explos. Pyrotech. 1995, 20(3): 36-40.
  • [133] Zhang, W.B.; Fan, X.D.; Zhu, X.Z.; Fan, W.W. Synthesis and Mechanical Properties of Poly(tetrahydrofuran)-poly(butadiene)-poly(tetrahydrofuran) Triblock Copolymer. J. Solid Rocket Tech. 2015, 38(2): 251-260.
  • [134] Zhang, W.B.; Fan, X.D.; Tian, W.; Chen, H.; Zhu, X.Z.; Zhang, H.T. Preparation of a P(THF-co-PO)-b-PB-b-P(THF-co-PO) Triblock Copolymer via Cationic Ringopening Polymerization and Its Use as a Thermoset Polymer. RSC Adv. 2015, 5: 66073-66081.
  • [135] Aguiar, M.; Menezes, S.C.; Akcelrud, L. Configuration Double Selectivity in the Epoxidation of Hydroxy-terminated Polybutadiene with m-Chloroperbenzoic Acid. Macromol. Chem. Phys. 1994, 195: 3937-3948.
  • [136] Sun, J.; Zheng, Y.S.; Gao, G.X.; Wang, L.; Wang, J.; Liu, Y. Preparation of Epoxidized Hydroxyl-terminated Polybutadiene by Acetic Acid Peroxide in-situ. China Synthetic Rubber Industry 2008, 31(4): 286-289.
  • [137] Gerbase, A.E.; Gregório, J.R.; Martinelli, M.; von Holleben, M.L.A.; Jacobi, M.A.M.; Freitas, L.L.; Calcagno, C.I.W.; Mendes, A.N.F.; Pires, M.L. Polymers Oxidation with VO(acac)2 Complex. Catal. Today 2000, 57: 241-245.
  • [138] Fan, M.X.; Ceska, G.W.; Horgan, J. Method for the Epoxidation of Unsaturated Polymers. Patent US 5789512, 1998.
  • [139] Wang, Q.F.; Zhang, X.W.; Wang, L.; Mi, Z.T. Kinetics of Epoxidation of Hydroxyl-Terminated Polybutadiene with Hydrogen Peroxide under Phase Transfer Catalysis. Ind. Eng. Chem. Res. 2009, 48: 1364-1371.
  • [140] Wang, Q.F.; Zhang, X.W.; Wang, L.; Mi, Z.T. Epoxidation of Hydroxylterminated Polybutadiene with Hydrogen Peroxide under Phase-transfer Catalysis. J. Mol. Catal. A-Chem. 2009, 309: 89-94.
  • [141] Alavi Nikje, M.M.; Mozaffari, Z. Selective Epoxidation of Hydroxyl Terminated Polybutadiene Using in situ Generated Dimethyl Dioxirane in the Presence of MoO3. Polimery 2007, 52(11-12): 820-826.
  • [142] Alavi Nikje, M.M.; Mozaffari, Z. Chemoselective Epoxidation of Hydroxylterminated Polybutadiene (HTPB) Using in-situ Generated Dimethyl Dioxirane (DMD). Des. Monomers Polym. 2007, 10(1): 67-77.
  • [143] Alavi Nikje, M.M.; Mozaffari, Z. Polybutadiene and Hydroxyl-Terminated Polybutadiene Epoxidation Using in situ-Generated Dimethyl Dioxirane (DMD)/ Transition Metal Salts Complex. Des. Monomers Polym. 2008, 11: 271-281.
  • [144] Alavi Nikje, M.M.; Soleimani, M.; Mozaffari, Z. In situ Generated Dimethyl Dioxirane (DMD)/Copper(II) (2,2’-diamino-4,4’-bithiazole) Complex as a New Oxidant for Polybutadiene and Hydroxyl Terminated Polybutadiene (HTPB) Epoxidation. J. Elastom. Plast. 2009, 41: 41-64.
  • [145] Alavi Nikje, M.M.; Hajifatheali, H. Nanoclay-Mediated Epoxidation of HTPB Using In-Situ-Generated Dimethyl Dioxirane. Des. Monomers Polym. 2011, 14: 155-165.
  • [146] Alavi Nikje, M.M.; Hajifatheali, H. Performance of Dimethyl Dioxirane/Nano-TiO2 on Epoxidation of Polybutadiene and Hydroxyl Terminated Polybutadiene. J. Elastom. Plast. 2012, 45(5): 457-469.
  • [147] Latha, P.B.; Adhinarayanan, K.; Ramaswamy, R. Epoxidized Hydroxy-terminated Polybutadiene-Synthesis, Characterization and Toughening Studies. Int. J. Adhes. Adhes. 1994, 14(1): 57-61.
  • [148] Sun J.; Zheng, Y.S.; Gao, G.X.; Wang, L.; Tan, Y.B. Study on Curing Process of Epoxidized Hydroxyl-terminated Polybutadiene/H12 MDI Polyurethane. J. Solid Rocket Technol. 2008, 31(3): 279-287.
  • [149] Sun J.; Zheng, Y.S.; Gao, G.X.; Wang, L.; Tan, Y.B. Mechanical Properties of Modified Hydroxyl-Terminated Polybutadiene Based Polyurethane. Chin. J. Energ. Mater. 2008, 16(3): 323-326
  • [150] Zhou, Q.Z.; Jie, S.Y.; Li, B.G. Facile Synthesis of Novel HTPBs and EHTPBs with High cis-1,4 Content and Extremely Low Glass Transition Temperature. Polymer 2015, 67: 208-215.
  • [151] Fu, X.L.; Fan, X.Z.; Meng, L.L.; Wei, H.J.; Liu, X.G. Synthesis of Epoxidized Hydroxyl-terminated Polybutadiene and Its Application Prospect in Propellant. Chem. Propellants. Polym. Mater. 2014, 12(1): 23-26.
  • [152] Jones, R.V.; Moberly, C.W.; Reynolds, W.B. Hydrogenated Synthetic Elastomers. Ind. Eng. Chem. 1953, 45(5): 1117-1122.
  • [153] Iwama, A.; Hasue, K.; Takahashi, T.; Matsui, K.; Ishiura, K. Hydrogenated Hydroxy-Terminated Polyisoprene as a Fuel Binder for Composite Solid Propellants. Propellants Explos. Pyrotech. 1996, 21(1): 43-50.
  • [154] Scariah, K.J.; Sekhar, V.; Rama Rao, M. Thermal Degradation Behaviour of Copolyurethanes Based on Hydroxy Terminated Polybutadienes and Its Hydrogenated Analogs: Thermogravimetric and Pyrolysis-G.C. Studies. Eur. Polym. J. 1994, 30(8): 925-931.
  • [155] Sekkar, V.; Krishnamurthy, V.N. Mechanical and Swelling Properties of Copolyurethanes Based on Hydroxy-Terminated Polybutadiene and Its Hydrogenated Analog. Propellants Explos. Pyrotech. 1997, 22: 289-295.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-197d6a09-1fd1-4110-85da-d18d864c3f0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.