PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of rotation on Jeffrey nanofluid flow saturated by a porous medium

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the effects of rotation on a Jeffery nanofluid flow in a porous medium which is heated from below is studied. Darcy model is employed for porous medium and the Jeffrey fluid model is used as a base fluid. The Navier-Stokes equations of motion of fluid are modified under the influence of the Jeffrey parameter, naoparticles and rotation. The basic perturbation technique based on normal modes is applied to derive the dispersion relation for a Rayleigh number. The effects of the Taylor number, Jeffrey parameter, Lewis number, modified diffusivity ratio, nanoparticles Rayleigh number and medium porosity on the stationary convection of the physical system have been analyzed analytically and graphically. It is observed that the rotation parameter has a stabilising influence for both bottom/top-heavy configurations.
Rocznik
Strony
17--29
Opis fizyczny
Bibliogr. poz.30, rys.
Twórcy
autor
  • Department of Mathematics, NSCBM Govt. College, Hamirpur-177 005, Himachal Pradesh, India
Bibliografia
  • [1] Choi, S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows. ASME FED-Vol. 231/MD, 66: 99-105.
  • [2] Buongiorno, J. (2006). Convective transport in nanofluids. ASME J. of Heat Trans., 128, 240-250.
  • [3] Kumar, R.N., Gowda, R.J.P., Gireesha, B.J., & Prasannakumara, B.C. (2021). Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy-Forchheimer porous medium. Eur. Phys. J. Spec. Top., 230, 1227-1237.
  • [4] Nield, D.A., & Kuznetsov, A.V. (2009). Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transfer, 52, 5796-5801.
  • [5] Yadav, D., Agrawal, G.S., & Bhargava, R. (2011). Thermal instability of rotating nanofluid layer. Int J. Eng. Science, 49, 1171-1184.
  • [6] Sowmya, G., Gireesha B.J., Sindhu, S., & Prasannakumara, B.C. (2020). Investigation of Ti6Al4V and AA7075 alloy embedded nanofluid flow over longitudinal porous fin in the presence of internal heat generation and convective condition. Commun. Theor. Phys. 72, 025004
  • [7] Madhukesh, J.K., Kumar, R.N., Gowda R.J. Punith, Prasannakumara, B.C. Ramesh, G.K. Khan M. Ijaz, Khan, S.U., & Chu, Yu-Ming. (2021). Numerical simulation of AA7072-AA7075//water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. of Molecular Liquids, 335, 116103.
  • [8] Nield, D.A., & Bejan, A. (2006). Convection in Porous Medium. New York: Springer.
  • [9] Jeffreys, H. (1926). The stability of a layer of fluid heated below. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 833-844.
  • [10] Gowda, R.J. Punith, Kumar, R. Naveen, Prasannakumara, B.C., Nagaraja, B., & Gireesha, B.J. (2021). Exploring magnetic dipole contribution on ferromagnetic nanofluid flow over a stretching sheet: An application of Stefan blowing. J. of Molecular Liquids, 335, 116215.
  • [11] Nadeem, S., & Akbar, N.S. (2009). Peristaltic flow of a Jeffrey fluid with variable viscosity in an asymmetric cannel. Z. Naturforsch., 64a, 713-722.
  • [12] Sushma, K., Sreenadh, S., & Dhanalakshmi, P. (2017). Mixed convection flow of a Jeffrey nanofluid in a vertical cannel. Middle-East Journal of Scientific Research, 25, 950-959.
  • [13] Hayat, T., Ullah, H., Ahmad, B., & Alhodaly, M.S. (2021). Heat transfer analysis in convective flow of Jeffrey nanofluid by vertical stretchable cylinder. Int. Comm. in Heat and Mass Transfer, 120, 104965.
  • [14] Ullah, H., Hayat, T., Ahmad, S., & Alhodaly, M.S. (2021). Entropy generation and heat transfer analysis in power-law fluid flow: Finite difference method. Int. Comm. in Heat and Mass Transfer, 122, 105111.
  • [15] Sheu, L.J. (2011). Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid. Transp. Porous Media, 88, 461-477.
  • [16] Chand, R., Rana, G.C., & Puigjaner, D. (2018). Thermal instability analysis of an elasticoviscous nanofluid layer. Engineering Transactions, 66, 301-324.
  • [17] Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. New York: Dover Publication.
  • [18] Vadasz, P. (1998). Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. Journal of Fluid Mechanics, 376, 351-375.
  • [19] Sharma, V., & Rana, G.C. (2001). Thermal instability of a Walters’ (Model B’) elastico-viscous fluid in the presence of variable gravity field and rotation in porous medium. J. Non-Equilib. Thermodyn., 26, 31-40.
  • [20] Ullah, H., Khan, M.I. & Hayat, T., Khan, M.I. (2020). Modeling and analysis of megneto-Carreau fluid with radiative heat flux: Dual solutions about critical point. Advances in Mech. Eng., 12, 1-10.
  • [21] Ahmad, S., Ullah, H., Hayat, T., & Alsaedi, A. (2020). Computational analysis of timedependent viscous fluid flow and heat transfer. Int. J. of Modern Physics B, 34, 2050141.
  • [22] Ullah, H., Hayat, T., Ahmad S., Alhodaly, M.S., & Momani, S. (2021). Numerical simulation of MHD hybrid nanofluid flow by a stretchable surface. Chinese J. of Physics, 71, 597-609.
  • [23] Ahmad S., Ullah, H., Hayat, T., & Alhodaly, M.S. (2021). Time-dependent power-law nanofluid with entropy generation. Phys. Scr., 96, 025208.
  • [24] Kang, J., Fu, C., & Tan, W. (2011). Thermal convective instability of viscoelastic fluid in a rotating porous layer heated from below. J Non-Newton Mech., 166, 93-101.
  • [25] Chand, R., & Rana, G.C. (2012). On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium. Int. J. of Heat and Mass Transfer, 55, 5417-5424.
  • [26] Rana, G.C., Chand, R., & Jamwal, H.S. (2014). The onset of thermal instability of viscoelastic rotating fluid permeated with suspended particles in porous medium. Structural Integrity and Life, 14, 193-198.
  • [27] Chand, R., Rana, G.C., & Kango, S.K. (2015). Effect of variable gravity on thermal instability of rotating nanofluid in porous medium. FME Transactions, 43, 62-69.
  • [28] Chand, R., Rana, G.C., & Yadav, D. (2017). Thermal instability of couple-stress nanofluid with vertical rotation in a porous medium. Journal of Porous Media, 20, 635-648.
  • [29] Rana, G.C., Gautam, P.K., & Saxena, H. (2019). Electrohydrodynamic thermal instability in a Walters’ (model b’) rotating nanofluid saturating a porous medium. J. of the Serbian Soc. Comp. Mech., 13, 19-35.
  • [30] Ahmad, S., Hayat, T., Alsaedi, A., Ullah, H., Alsaedi, A., & Shah, F. (2021). Computational modeling and analysis for the effect of magnetic field on rotating stretched disk flow with heat transfer. Propulsion and Power Research, 10, 48-57.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19742df8-8c8a-4993-a168-517353f8f6d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.