PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Properties of YSZ Coatings Prepared by Plasma Spray Physical Vapor Deposition for Biomedical Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the study of microstructure and properties of 8 mol% yttrium stabilized zirconia coating fabricated by Plasma Spray Physical Vapor Deposition technique on commercial pure titanium. The coating was characterized by X-ray diffraction, high resolution scanning electron microscope, profilometer, nanoindentation and nanomachining tests. The X-ray phase analysis exhibit the tetragonal Zr0.935 Y0.065O1.968, TiO and α-Ti phases. The Rietveld refinement technique were indicated the changes of crystal structure of the produced coatings. The characteristic structure of columns were observed in High Resolutions Scanning Electron Microscopy. Moreover, the obtained coating had various development of surfaces, thickness was equal to 3.1(1) μm and roughness 0.40(7) μm. Furthermore, the production coatings did not show microcracks, delamination and crumbing. The performed experiment encourages carried out us to tests for osseointegration.
Słowa kluczowe
Twórcy
autor
  • University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • Rzeszow University of Technology, Department of Materials Science, 8 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
  • University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • University of Silesia in Katowice, Institute of Technology and Mechatronics, 12 Zytnia Str., Poland
autor
  • University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
Bibliografia
  • [1] S. L. Aktug, I. Kutbay, M. Usta, Characterization and formation of bioactive hydroxyapatite coating on commercially pure zirconium by micro arc oxidation, J. Alloys Compd. (2017). doi:10.1016/j.jallcom.2016.10.217.
  • [2] S. Madeira, A. M. P. Pinto, L. C. Rodrigues, O. Carvalho, G. Miranda, R. L. Reis, J. Caramês, F. S. Silva, Effect of sintering pressure on microstructure and mechanical properties of hot-pressed Ti6Al4V - ZrO2 materials, Mater. Des. 120, 394-403 (2017). doi:10.1016/j.matdes.2017.02.038.
  • [3] R. I. M. Asri, W. S. W. Harun, M. Samykano, N. A. C. Lah, S. A. C. Ghani, F. Tarlochan, M. R. Raza, Corrosion and surface modification on biocompatible metals: A review, Mater. Sci. Eng. C. 77, 1261-1274 (2017). doi:10.1016/j.msec.2017.04.102.
  • [4] R. B. Osman, M. V. Swain, A critical review of dental implant materials with an emphasis on titanium versus zirconia, Materials (Basel) 8, 932-958 (2015). doi:10.3390/ma8030932.
  • [5] C. Song, M. Liu, Z.-Q. Deng, S.-P. Niu, C.-M. Deng, H.-L. Liao, A novel method for in-situ synthesized TiN coatings by plasma spray-physical vapor deposition, Mater. Lett. 217, 127-130 (2018). doi:10.1016/J.MATLET.2018.01.068.
  • [6] G. Mauer, A. Hospach, R. Vaßen, Process development and coating characteristics of plasma spray - PVD, Surf. Coatings Technol. 220, 219-224 (2013). doi:10.1016/j.surfcoat.2012.08.067.
  • [7] M. Góral, T. Kubaszek, S. Kotowski, J. Sieniawski, S. Dudek, Influence of deposition parameters on structure of TBCS deposited by PS-PVD method, Int. Sci. Conf. Corros. 227, 369-372 (2015). doi:10.4028/www.scientific.net/SSP.227.369.
  • [8] K. Szymański, M. Góral, T. Kubaszek, P. C. Monteiro, Microstructure of TBC Coatings Deposited by HVAF and PS-PVD Methods, Solid State Phenom. 227, 373-376 (2015). doi:10.4028/www.scientific.net/SSP.227.373.
  • [9] G. Mauer, A. Hospach, N. Zotov, R. Vaßen, Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying, J. Therm. Spray Technol. 22, 83-89 (2013). doi:10.1007/s11666-012-9838-y.
  • [10] D. M. Dohan Ehrenfest, P. G. Coelho, B. S. Kang, Y. T. Sul, T. Albrektsson, Classification of osseointegrated implant surfaces: Materials, chemistry and topography, Trends Biotechnol. 28, 198-206 (2010). doi:10.1016/j.tibtech.2009.12.003.
  • [11] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dent. Mater. 23, 844-854 (2007). doi:10.1016/j.dental.2006.06.025.
  • [12] Y. Shibata, Y. Tanimoto, A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration, J. Prosthodont. Res. 59, 20-33 (2015). doi:10.1016/j.jpor.2014.11.007.
  • [13] B. Zhang, L. Wei, H. Guo, H. Xu, Microstructures and deposition mechanisms of quasi - columnar structured yttria - stabilized zirconia coatings by plasma spray physical vapor deposition, Ceram. Int. 43, 12920-12929 (2017). doi:10.1016/j.ceramint.2017.06.190.
  • [14] L. Gao, L. Wei, H. Guo, S. Gong, H. Xu, Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition, Ceram. Int. 42, 5530–5536 (2016). doi:10.1016/j.ceramint.2015.12.111.
  • [15] G. X. Tang, R. J. Zhang, Y. N. Yan, Z. X. Zhu, Preparation of porous anatase titania film, Mater. Lett. 58, 1857-1860 (2004) . doi:10.1016/j.matlet.2003.11.016.
  • [16] R. Agarwal, A. J. García, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair, Adv. Drug Deliv. Rev. 94, 53-62 (2015). doi:10.1016/j.addr.2015.03.013.
  • [17] F. Shao, H. Zhao, C. Liu, X. Zhong, Y. Zhuang, J. Ni, S. Tao, Dense yttria - stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition, Ceram. Int. 43, 2305-2313 (2017). doi:10.1016/j.ceramint.2016.11.014.
  • [18] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, 1709-1800 (2014). doi:10.3390/ma7031709.
  • [19] J. M. Cordeiro, V. A. R. Barao, Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?, Mater. Sci. Eng. C 71, 1201-1215 (2017). doi:10.1016/j.msec.2016.10.025.
  • [20] M. Long, H. J. Rack, Titanium alloys in total joint replacement - a materials science perspective, Biomaterials 19, 1621-1639 (1998). doi:10.1016/S0142-9612(97)00146-4.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19733eb8-a4c3-434b-b62f-8af040bad12e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.