PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic segmentation of infant brain MR images: With special reference to myelinated white matter

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automatic segmentation of infant brain images is faced with numerous challenges like poor image contrast, motion artifacts, and changes caused by progressive myelination of the infant brain. Since timely myelination points to normal brain maturity, monitoring the progress and degree of myelination is clinically significant. However, most of the existing segmentation methods do not segment myelinated portions of the infant brain. In this paper, we propose a segmentation approach focused on segmenting the myelinated white matter tissue in T1-weighted magnetic resonance images of the infant brain. The novelty of the algorithm lies in the introduction of a weighted localized Tsallis entropy based thresh-olding method. The proposed method is also tested on older babies beyond the one-year age mark to verify its utility and robustness. It is seen that the mean Dice coefficients obtained for myelin segmentation by the proposed weighted localized method are higher than that of the other methods, namely, the conventional Tsallis entropy thresholding and modified localized method.
Twórcy
autor
  • School of Electronics Engineering, VIT University, Vellore, India
  • Department of Radiology, Sri Ramachandra University, Chennai, India
  • M.R. Scientist, Philips Innovation Centre, Bangalore, India
autor
  • School of Electronics Engineering, VIT University, Vellore, India
Bibliografia
  • [1] Suetens P. Fundamentals of medical imaging. 2nd ed. Cambridge University Press; 2009. p. 159–89.
  • [2] Rodrigues KM, Ben-Avi E, Silva DD, Choe M, Drottar M, Wang R, et al. A free surfer-compliant consistent manual segmentation of infant brains spanning the 0–2 year age range. Front Hum Neurosci 2015;9(21):1–12.
  • [3] Choe MS, Mantilla SO, Makris N, Gregas M, Bacic J, Haehn D, et al. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds. Cereb Cortex 2013;23:2100–17.
  • [4] Gousias IS, Hammers A, Counsell SJ, Srinivasan L, Rutherford MA, et al. Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions. PLoS ONE 2013;8(4.).
  • [5] Knaap MS, Valk J. Magnetic resonance of myelination and myelin disorders. 3rd ed. Berlin, Heidelberg: Springer- Verlag; 2005. p. 37–55.
  • [6] Broche AB, Fonov V, Leppert I, Pike GB, Collins DL. Human brain myelination from birth to 4.5 years. MICCAI, Part II. Lect Notes Comput Sci, vol. 5242. 2008;p. 180–7.
  • [7] Leroy F, Mangin JF, Rousseau F, Glasel H, Pannier LH, Dubois J, et al. Atlas-free surface reconstruction of the cortical grey–white interface in infants. PLoS ONE 2011;6(11).
  • [8] Deoni SCL, Mercure E, Blasi A, Gasston D, Thomson A, Johnson M, et al. Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 2011;31(2):784–91.
  • [9] NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development-Glossary. Available from: https://www.nichd.nih.gov/health/clinicalresearch/ clinical-researchers/terminology/pages/glossary.aspx#OWL [accessed 3.09.15].
  • [10] Infant, Newborn – World Health Organization. Available from: http://www.who.int/topics/infant_newborn/en/ [accessed 17.04.15].
  • [11] Elmaoğlu M, Çelik A. MRI handbook: MR physics, patient positioning, and protocols. Springer; 2012. p. 25–46.
  • [12] Saunders DE, Thompson C, Gunny R, Jones R, Cox T, Chong WK. Magnetic resonance imaging protocols for paediatric neuroradiology. Pediatr Radiol 2007;37:789–97.
  • [13] Malamateniou C, Malik SJ, Counsell SJ, Allsop JM, McGuinness AK, Hayat T, et al. Motion-compensation techniques in neonatal and fetal MR imaging. Am J Neuroradiol 2013;34:1124–36.
  • [14] Cowan FM. Magnetic resonance imaging of the normal infant brain: term to 2 years. In: Rutherford MA, editor. MRI of the neonatal brain. Available from: http://www.mrineonatalbrain.com/ch02-04.php [accessed 26.02.15].
  • [15] Barkovich AJ. Concepts of myelin and myelination in neuroradiology. Am J Neuroradiol 2000;21: 1099–109.
  • [16] Jones BV. Normal myelination. In: Osborn AG, Blaser SI, Salzman KL, Katzman GL, Provenzale J, Castillo M, et al., editors. Diagnostic imaging brain. Amirsys; 2004. pp. I-9-4–7.
  • [17] Welker KM, Patton A. Assessment of normal myelination with magnetic resonance imaging. Semin Neurol 2012;32:15–28.
  • [18] Parizel PM, Hauwe L, Belder F, Goethem JV, Venstermans C, Salgado R, et al. Magnetic resonance imaging of the brain. In: Reimer P, et al., editors. Clinical MR imaging. Berlin, Heidelberg: Springer-Verlag; 2010.
  • [19] Goel A, Gaillard F, et al. Normal myelination. Available from: http://radiopaedia.org/articles/normal-myelination [accessed 3.09.15].
  • [20] Song Z. Statistical tissue segmentation of neonatal brain MR images.[Ph.D. Dissertation] Dept. of Bioengineering, Univ. of Pennsylvania; 2008.
  • [21] Cocosco CA, Zijdenbos AP, Evans AC. A fully automatic and robust brain MRI tissue classification method. Med Image Anal 2003;7:513–27.
  • [22] Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839–51.
  • [23] Somasundaram K, Kalaiselvi T. Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images. Comput Biol Med 2010;40:811–22.
  • [24] Somasundaram K, Kalaiselvi T. Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations. Comput Biol Med 2011;41:716–25.
  • [25] Singh L, Chetty G, Sharma D. Using hybrid neural networks for identifying the brain abnormalities from MRI structural images. In: Huang T, et al., editors. ICONIP, Part V. Lect Notes Comput Sci, 66. 2012. p. 465–72.
  • [26] Aljabar P, Bhatia KK, Murgasova MK, Hajnal JV, Boardman JP, Srinivasan L, et al. Assessment of brain growth in early childhood using deformation-based morphometry. Neuroimage 2008;39(1):348–58.
  • [27] Murgasova MK. Segmentation of brain MRI during early childhood.[Ph.D. Dissertation] Dept. of Computing, Imperial College London; 2008.
  • [28] Fonov V, Coupé P, Styner M, Collins L. Automatic lateral ventricle segmentation in infant population with high risk of autism. Beijing, China: Organization for Human Brain Mapping; 2012, Available from: https://hal.archives-ouvertes.fr/hal-00683773.
  • [29] Chiverton J, Wells K, Lewis E, Chen C, Podda B, Johnson D. Statistical morphological skull stripping of adult and infant MRI data. Comput Biol Med 2007;37:342–57.
  • [30] Alansary A, Ismail M, Soliman A, Khalifa F, Nitzken M, et al. Infant brain extraction in T1-weighted MR images using BET and refinement using LCDG and MGRF models. IEEE J Biomed Health Inf 2015. http://dx.doi.org/10.1109/JBHI.2015.2415477.
  • [31] Wang L, Shi F, Gao Y, Li G, Gilmore JH, et al. Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. Neuroimage 2014;89:152–64.
  • [32] Wang L, Gao Y, Shi F, Li G, Gilmore JH, et al. LINKS: learning- based multi-source integration framework for segmentation of infant brain images. Neuroimage 2015;108:160–72.
  • [33] Li G, Nie J, Wang L, Shi F, Gilmore JH, et al. Measuring longitudinally dynamic cortex development in infants by reconstruction of consistent cortical surfaces. IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro; 2013. pp. 1380–3.
  • [34] Wang L, Shi F, Yap PT, Gilmore JH, Lin W, Shen D. 4D multi- modality tissue segmentation of serial infant images. PLoS ONE 2012;7(9.).
  • [35] Dai Y, Shi F, Wang L, Wu G, Shen D. iBEAT: a toolbox for infant brain magnetic resonance image processing. Neuroinformatics 2013;11:211–25.
  • [36] Jelacic S, de Regt D, Weinberger E. Interactive digital MR atlas of the pediatric brain. Radiographics 2006;26(2):497–501.
  • [37] Watson J. How to determine a sample size: tipsheet #60. University Park, PA: Penn State Cooperative Extension; 2001, Available from: http://www.extension.psu.edu/evaluation/pdf/TS60.pdf.
  • [38] Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143–55.
  • [39] Shattuck DW, Leahy RM. Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 2001;20:1167–77.
  • [40] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10(2):266–77.
  • [41] Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern 1973;3(6):610–21.
  • [42] Chamoli N, Kukerja S, Semwal M. Survey and comparative analysis on entropy usage for several applications in computer vision. Int J Comput Appl (0975–8887) 2014;97 (16).
  • [43] Albuquerque MP, Esquef IA, Mello ARG, Albuquerque MP. Image thresholding using Tsallis entropy. Pattern Recogn Lett 2004;25:1059–65.
  • [44] Zhang Y, Wu L. Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. Entropy 2011;13:841–59.
  • [45] Vaithiyanathan V, Karthikeyan B, Venkatraman B. Image segmentation based on modified Tsallis entropy. Contemp Eng Sci 2014;7:523–9.
  • [46] El-Sayed MA, Abdel-Khalek S, Abdel-Aziz E. Study of efficient technique based on 2D Tsallis entropy for image thresholding. Int J Comput Sci Eng 2011;3(9):3125–38.
  • [47] Sadek S, Al-Hamadi A. Entropic image segmentation: a fuzzy approach based on Tsallis entropy. Int J Comput Vis Signal Process 2015;5(1):1–7.
  • [48] Ripley BD. Pattern recognition and neural networks. United Kingdom: Cambridge University Press; 1996.
  • [49] Kim SH, Fonov V, Dietrich C, Vachet C, Hazlett HC, Smith RG, et al. Adaptive prior probability and spatial temporal intensity change estimation for segmentation of the one- year-old human brain. J Neurosci Methods 2013;212(1):43–55.
  • [50] Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards AD, Rueckert D, et al. Automatic segmentation and reconstruction of the cortex from neonatal MRI. Neuroimage 2007;38:461–77.
  • [51] Shi F, Fan Y, Tang S, Gilmore JH, Lin W, Shen D. Neonatal brain image segmentation in longitudinal MRI studies. Neuroimage 2010;49(1):391–400.
  • [52] Gui L, Lisowski R, Faundez T, Hüppi PS, Lazeyras F, Kocher M. Morphology-driven automatic segmentation of MR images of the neonatal brain. Med Image Anal 2012;16:1565–79.
  • [53] Weisenfeld NI, Warfield SK. Automatic segmentation of newborn brain MRI. Neuroimage 2009;47(2):564–72.
  • [54] Prastawa M, Gilmore JH, Lin W, Gerig G. Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 2005;9:457–66.
  • [55] Salzman KL. White matter tracts. In: Harnsberger HR, Osborn AG, Macdonald AJ, Ross JS, Moore KR, Salzman KL, et al., editors. Diagnostic and surgical imaging anatomy: brain, head & neck, spine. Amirsys; 2006. pp. I-42–63.
  • [56] Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC. Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 1994;13(4):716–24.
  • [57] Melbourne A, Cardoso MJ, Kendall GS, Robertson NJ, Marlow N, Ourselin S. NeoBrainS12 challenge: adaptive neonatal MRI brain segmentation with myelinated white matter class and automated extraction of ventricles I–IV. MICCAI Grand Challenge: Neonatal Brain Segmentation (NeoBrainSI2). 2012. pp. 16–21.
  • [58] Egekher VS, Benders MJNL, Viergever MA, Išgum I. Automatic neonatal brain tissue segmentation with MRI. Proc SPIE 8669, Medical Imaging: Image Processing; 2013.
  • [59] Anbeek P, Išgum I, Kooij BJM, Mol CP, Kersbergen KJ, et al. Automatic segmentation of eight tissue classes in neonatal brain MRI. PLoS ONE 2013;8(12).
  • [60] Makropoulos A, Gousias IS, Ledig C, Aljabar P, Serag A, et al. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 2014;33(9):1818–31.
  • [61] Moeskops P, Benders MJNL, Chita SM, Kersbergen KJ, Groenendaal F, et al. Automatic segmentation of MR brain images of preterm infants using supervised classification. Neuroimage 2015;118:628–41.
  • [62] Isgum I, Benders MJNL, Avants B, Cardoso MJ, Counsell SJ, et al. Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge. Med Image Anal 2015;20(1):135–51.
  • [63] Wang S, Murgasova MK, Schnabel JA. An atlas-based method for neonatal MR brain tissue segmentation. Proceedings of the MICCAI Grand Challenge: Neonatal Brain Segmentation; 2012. p. 28–35.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-196fdb92-738f-4690-92f5-d093d3812af7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.